A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The use of an adapted "olfactory chip" for the efficient calcium imaging of C. elegans males is described here. Studies of male exposure to glycerol and a pheromone are also shown.
The use of calcium indicators has greatly enhanced our understanding of neural dynamics and regulation. The nematode Caenorhabditis elegans, with its completely mapped nervous system and transparent anatomy, presents an ideal model for understanding real-time neural dynamics using calcium indicators. In combination with microfluidic technologies and experimental designs, calcium-imaging studies using these indicators are performed in both free-moving and trapped animals. However, most previous studies utilizing trapping devices, such as the olfactory chip described in Chronis et al., have devices designed for use in the more common hermaphrodite, as the less common male is both morphologically and structurally dissimilar. An adapted olfactory chip was designed and fabricated for increased efficiency in male neuronal imaging with using young adult animals. A turn was incorporated into the worm loading port to rotate the animals and to allow for the separation of the individual neurons within a bilateral pair in 2D imaging. Worms are exposed to a controlled flow of odorant within the microfluidic device, as described in previous hermaphrodite studies. Calcium transients are then analyzed using the open-source software ImageJ. The procedure described herein should allow for an increased amount of male-based C. elegans calcium imaging studies, deepening our understanding of the mechanisms of sex-specific neuronal signaling.
Microfluidic devices provide increased access to precisely controlled environments, wherein animals, such as the nematode C. elegans, can be experimentally manipulated1. These studies include behavioral assays, calcium imaging studies, or even screenings for specific phenotypes, resulting in more exact measurements of experimental outcomes1,2,3,4,5,6. Microfluidics provide small-scale liquid conditions through which detailed experiments can be run while utilizing minimal amounts of reagents. There is a constant production of new microfluidic device designs, and the use of each varies, from arenas that allow for the natural sinusoidal motion of C. elegans in behavioral assays and neural imaging studies, to trap devices used in neural imaging and olfactory studies, to devices that allow for high-throughput phenotypic analysis in genetic screens4,5,6,7. Following the fabrication of a master mold, microfluidic devices are inexpensive to construct—given the reusability of the master—and easy to use, allowing for rapid data generation via high-throughput studies. The fabrication of devices using polymers such as polydimethylsiloxane (PDMS) allows for the creation of new devices within hours.
Calcium imaging studies use genetically encoded calcium indicators (GECIs) expressed in target cells to measure the neural dynamics of those cells in real time8,9,10,11. The transparent nature of C. elegans allows for the recording of the fluorescent levels of these proteins in live animals. Traditionally, GECIs rely on the green fluorescent protein (GFP)-based sensor GFP-Calmodulin-M13 Peptide (GCaMP), although more recent studies have adapted these sensors to allow for better signal-to-noise ratios and red-shifted excitation profiles. Following the development of GCaMP3, proteins with these specifications have varied, including sensors such as GCaMP6s and GCaMP6f (slow and fast fluorescence off-rates, respectively), as well as RFP-Calmodulin-M13 Peptide (RCaMP), which has a red-shifted activation profile. The combination of these GECIs with C. elegans cell-specific gene promoter sequences can target cells of interest, particularly sensory neurons12,13,14,15,16.
While the ease of C. elegans use in microfluidic studies is apparent, almost all studies have focused on hermaphrodites. Despite males only accounting for 0.01-0.02% of the wild type population, invaluable findings can arise from their characterization. While the physical connectome of the hermaphrodite nervous system has been fully mapped for decades17, the male connectome remains incomplete, especially in the head region of the animal18. The use of calcium imaging in males will help to generate an understanding of the male nervous system and the differences that arise between the two sexes. The smaller size of C. elegans adult males prevents effective and reliable trapping in the loading ports of traditional olfactory devices designed for larger hermaphrodites. To address this, a modified version of the Chronis Olfactory Chip19 was developed with a narrower loading port, a lower channel height, and turns in the worm loading port (which rotate the animal), allowing for the visualization of bilateral left/right neuronal pairs. This design permits: (1) the effective trapping of young adult males, (2) a more reliable orientation of the animal for the visualization of both members of bilateral paired neurons, and (3) the precise imaging of neural activity in male neurons.
Increasingly, studies show that C. elegans males respond differently than hermaphrodites to a variety of ascarosides (ascr), or nematode pheromones20,21,22,23,24. Therefore, developing an understanding of the neural dynamics and representations within the male connectome has become even more pertinent. Male C. elegans contain 87 sex-specific neurons not present in the hermaphrodite25,26, altering the connectome in as-yet undetermined ways. Being able to image these unique neural dynamics will allow us to better understand sex-specific responses and neural representations.
This protocol describes the use of a male-adapted olfactory chip for the neural imaging of male C. elegans chemosensation. The nociceptive neuron ASH responds reliably to 1 M glycerol in males, consistent with previous hermaphroditic studies27. Exposure to ascarosides may elicit responses that are variable from animal to animal, requiring a larger number of animals to be tested. The response of the male-specific CEM neurons has previously been shown, through both electrophysiology and calcium imaging studies, to respond variably to ascaroside #323.
1. Device Fabrication
NOTE: See reference1.
NOTE: Silicon master molds were fabricated using standard photolithographic techniques for patterning SU-8 photoresist on a silicon master1,7. Photomasks for wafer patterning were printed at 25,000 dpi. The male-adapted device features a Chronis Olfactory Chip design19 with a change in the worm loading port, adapting a design obtained from M. Zimmer (personal correspondence, 2016). A turn is included to control the rotation of the animals. The width of the worm loading port channel is narrowed to 50 μm. All channels are 32 μm tall. Once a silicon master mold is available to the user, the user can follow the subsequent protocol, as described previously1.
2. Buffer Preparation
3. Device Setup
NOTE: See1.
Figure 1. Microfluidic device setup. (A) Reservoirs and tubing. A 30 mL syringe without a plunger serves as the "reservoir." This is attached to a Luer valve with three flow options. One outlet is connected to a 3 mL syringe with a plunger, while the other is connected to a needle (orange) that is inserted into the tubing that connects to the microfluidic device. (B) The overall setup of the microfluidic imaging experiment. The device is placed on a stage of an inverted epifluorescence microscope, above the objective lenses. The "flow control" buffer travels through a 3-way valve that is controlled by a unit on the shelf above the setup. Lines containing buffers are then inserted into the appropriate device ports. (C) The ports of the microfluidic device. The "flow control" ports flank the other inlet ports: the "stimulus" and "buffer" ports. The "outlet" port is the right-most port. Due to the location of the worm loading arena, the "worm loading" port is the central-most port on the device. Please click here to view a larger version of this figure.
Figure 2: A male-adapted microfluidic olfactory chip. (A) The flow patterns of the device when the worm is exposed to buffer. Buffer (B) is shown in brown, and flow control (FC) is shown in yellow, with stimulus (S) in white. The worm loading port has been adapted to include a curve, which allows for better control of worm orientation. (B) The flow patterns of the device when the worm is exposed to stimulus. Buffer (B) is shown in brown, and flow control (FC) is shown in yellow, with stimulus (S) in white. (C) Measurements of the adapted device as fabricated. The worm loading port ends in a 42 µm opening, with a 50 µm channel designed for the male width. The measured height of the channels is 32 µm, despite a target of 25 µm in the design. (D-E) A trapped male expressing psra-6::GCaMP3. The sra-6 promoter is not ASH-specific, and some expression may be observed in the ASI neuron, although no calcium transients were observed in ASI. The image is (D) a combination of bright-field and fluorescent illumination, while (E) is fluorescent only. The scale bars denote 42 µm. (F) The ASH neuron responds to 1 M glycerol stimulation with robust neural activity. The blue area denotes the time of the 1 M glycerol stimulus. The shaded region denotes the standard error, with n = 20 pulses from seven worms. The red traces denote depolarizing responses. The Y-axes show ΔF/F0. The scale bar denotes 5 s. Please click here to view a larger version of this figure.
4. Animal Preparation
NOTE: See reference23.
5. Animal Loading
NOTE: See refefence1.
6. Stimulus and Acquisition
7. Image Analysis
An example of the overall device setup can be seen in Figure 1A-B. Figure 1A depicts the proper reservoir construction and setup. Figure 1B shows the connections of the reservoirs to the microfluidic device. Figure 1C depicts a microfluidic device with individual ports labeled for clarity.
The ...
The male-adapted olfactory chip incorporates a turn into a narrower loading port, which allows for more control of the orientation and for the efficient trapping of male C. elegans. This allows for the visualization of both the left and right members of neuronal bilateral pairs, without the need for z-stacking. This curve leads to an orientation away from vertical 100% of the time in worms where only one bilateral pair is targeted with a fluorescent marker, such as ASH (Figure 2D
The authors have nothing to disclose.
We would like to thank Manuel Zimmer for providing us with the initial design file that was adapted for use with males; Frank Schroeder for the synthesis and supply of ascr#3; Ross Lagoy for the insight and assistance with imaging and analysis; and Laura Aurilio for the master fabrication and who, alongside Christopher Chute, contributed to the review of this manuscript. Funding for this work was provided under the National Institutes of Health grant 1R01DC016058-01 (J.S.), the National Science Foundation grant CBET 1605679 (D.R.A.), and the Burroughs Wellcome Career Award at the Scientific Interface (D.R.A.).
Name | Company | Catalog Number | Comments |
Silicon Wafer | University Wafer | 452 | |
SU-8 2035 | MicroChem | Y111070-0500L1GL | |
Developer | MicroChem | Y020100-4000L1PE | |
Wafer Mask | Cad/Art Services | - | Custom order. Printed at 25,000 dpi. |
Sylgard-184 | Ellsworth Adhesives | 184 SIL ELAST KIT 0.5KG | |
1.0 mm Dermal Punches | Acuderm Inc. | P150 | |
Soft Tubing | Cole-Palmer | EW-06419-01 | |
Hard Tubing | IDEX Health & Science | 1622 | |
Pins | New England Small Tube | NE-1027-12 | |
Blocking Pins | New England Small Tube | 0.415/0.425" OD x .500 Long | Batch PB07027 |
3 mL syringes | BD | 309657 | |
30 mL syringes | Vitality Medical | 302832 | Used as buffer reservoirs. |
Stainless Steel Blunt Needle 23 Gauge, Polyprolylene Luer | Component Supply Company | NE-231PL-50 | |
Stopcocks with Luer connections; 3-way; male lock; 5 flow pattern; non-sterile | Cole-Palmer | EW-30600-07 | |
Fisherfinest Premium Cover Glass | Fisher Scientific | 12-548-5M | |
Mercator Control System LF-5 Plasma System | Mercator | LF-5 | |
Scotch Tape | Scotch | BSN43575 | |
Series 20 Chamber | Warner Instruments | P-2 | |
Vacuum Desicator | Bel-Art Scienceware | 420250000 | 24 cm inner diameter. |
Weigh Boats | Cole-Palmer | EW-01017-27 | |
Classic Plus Balance | Mettler Toledo | PB1501-S/FACT | |
Glass Pasteur Pipettes | Cole-Palmer | EW-25554-06 | |
Transfer pipettes | Genesee Scientific | 30-202 | |
Oven | Sheldon Manufacturing Inc | 9120993 | Model Number: 1500E. |
60 mm, non-vented, sharp edge Petri dishes | TriTech Research | T3308 | |
Zeiss Axio Observer.A1 | Zeiss | - | |
Hammamatsu Orca Flash 4.0 Digital CMOS | Hammamatsu | C11440-22CU | |
Blue Fluorescent Light | Lumencor | SOLA SM6-LCR-SA | 24-30V/7.9A DC. |
Illumination Adaptor | Zeiss | 423302-0000 | |
Series 1 and 2 Miniature Inert PTFE Isolation Valve | Parker | 001-0017-900 | 3-way valve for controlling flow. |
ValveLink8.2® | AutoMate Scientific | 01-18 | Flow Switch Controller |
Micro Manager | Micro-Manager | - | Free software, can be downloaded at: https://www.micro-manager.org/wiki/Download_Micro-Manager_Latest_Release |
ImageJ | ImageJ | - | Free software, can be downloaded at: https://imagej.nih.gov/ij/download.html |
Agar, Bacteriological Grade | Apex | 9012-36-6 | |
Peptone | Apex | 20-260 | |
CaCl2 | VWR | BDH0224-1KG | |
MgSO4 | Sigma-Aldrich | 230391-1kg | |
Cholesterol | Alfa Aesar | A11470 | |
Ethanol | Sigma-Aldrich | 270741-4L | |
Tetramisole | Sigma-Aldrich | L9756-10(G) | Store at 4 °C. |
Fluorescein | Sigma-Aldrich | FD2000S-250mg | Light Sensitive. Store in photoprotective vials. |
Glycerol | Sigma-Aldrich | G6279-1L | |
Ascaroside #3 | - | - | Synthesized in the Schroeder Lab (Cornell University). |
NaCl | Genesee Scientific | 18-215 | |
KH2PO4 | BDH | BDH9268.25 | |
K2HPO4 | J.T. Baker | 3252-025 | |
ASH GCaMP3 line | - | - | CX10979 (KyEx2865 [psra-6::GCAMP3 @ 100 ng/uL]). Developed in Bargmann lab. Provided from Albrecht Lab library. |
CEM GCaMP6 line | - | - | JSR49 (FkEx98[ppkd-2::GCaMP::SL2::dsRED + pBX-1]; pha-1(e2123ts); him-5(e1490); lite-1(ce314)). Developed by Robyn Lints. Provided from Srinivasan Lab library. |
E. coli (OP50) | Caenorhabditis Genetics Center | OP50 | |
"Reservoir" | - | - | To create a Reservoir: A "30 mL syringe", is connected to a "Stopcock with Luer connections; 3-way; male lock; 5 flow pattern; non-sterile", which is connected to a "3 mL syringe" and a "Stainless Steel Blunt Needle 23 Gauge, Polyprolylene Luer". The "Stainless Steel Blunt Needle 23 Gauge, Polyprolylene Luer" is then inserted into "Soft Tubing" approximately 1/3 of the way down the needle. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved