A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
A simple and efficient microinjection protocol for gene editing in channel catfish embryos using the CRISPR/Cas9 system is presented. In this protocol, guide RNAs and Cas9 protein were microinjected into the yolk of one-cell embryos. This protocol has been validated by knocking out two channel catfish immune-related genes.
The complete genome of the channel catfish, Ictalurus punctatus, has been sequenced, leading to greater opportunities for studying channel catfish gene function. Gene knockout has been used to study these gene functions in vivo. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system is a powerful tool used to edit genomic DNA sequences to alter gene function. While the traditional approach has been to introduce CRISPR/Cas9 mRNA into the single cell embryos through microinjection, this can be a slow and inefficient process in catfish. Here, a detailed protocol for microinjection of channel catfish embryos with CRISPR/Cas9 protein is described. Briefly, eggs and sperm were collected and then artificial fertilization performed. Fertilized eggs were transferred to a Petri dish containing Holtfreter's solution. Injection volume was calibrated and then guide RNAs/Cas9 targeting the toll/interleukin 1 receptor domain-containing adapter molecule (TICAM 1) gene and rhamnose binding lectin (RBL) gene were microinjected into the yolk of one-cell embryos. The gene knockout was successful as indels were confirmed by DNA sequencing. The predicted protein sequence alterations due to these mutations included frameshift and truncated protein due to premature stop codons.
Microinjection is a common laboratory technique used to deliver a small amount of a substance such as DNA, RNA, protein, and other macromolecules into cells or embryos through a glass capillary1. Microinjection is performed using special equipment setup including a microinjector, micromanipulator, and a microscope2. The technique has been used by researchers to genetically modify many organisms through the generation of transgenics, gene knockouts, and gene therapy, with the aim of understanding the dynamics of intracellular components3,4,5.
The channel catfish (Ictalurus punctatus) is the most popular catfish species in aquaculture and recreational fishing activities in the United States. There is an increasing need to study functional genomics in channel catfish, and sequencing of the complete genome of channel catfish enhances the utility of recent advances in genome editing tools6,7. Understanding gene function would not only enrich the research that is being conducted on catfish, but could also lead to more effective genetic improvement programs to enhance the catfish industry. Once critical genes for a given trait of interest are identified, they can be used to genetically improve catfish production through genome editing to generate beneficial alleles, selection for these alleles, suppressing the detrimental alleles, transferring the beneficial alleles through transgenesis, or some combination of these options. Combining the best genes for different commercially beneficial traits from different species in one fish would greatly improve productivity and profitability of fish production operations8.
Gene knockout is a direct method to study gene functions in vivo. Mutations at the DNA level will be inherited by future generations which will facilitate the study of their effects in different generations. Different genome editing tools have been developed including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system9,10,11,12.
The CRISPR/Cas9 system is a powerful, efficient tool that has been used to edit genomic DNA sequences including gene knockout in fish through RNA-guided site-specific DNA cleavage5,13. The system consists of a guide RNA (gRNA), which determines the targeted sequence in the genome and a DNA endonuclease enzyme, Cas9. The CRISPR/Cas9 system can be designed to target any sequence in the genome with several advantages over ZFNs and TALENs: (1) lower cost (2) easier engineering (3) more specific binding of guide RNA to the target sequence, and reduced off-target mutations (4) multiple sequences can be targeted with different gRNA at the same time (5) high mutagenesis rate in genes that could not be mutated by TALENs, and (6) improved germline transmission rate of mutations for up to 6-fold when compared to ZFNs and TALENs14,15,16,17,18.
The main alternative method for microinjection is electroporation, in which electric impulses are applied to embryos or cells to increase membrane permeability and the uptake of biological molecules19,20. Several transgenic fish were generated using electroporation such as medaka (Oryzias latipes), zebrafish (Danio rerio), chinook salmon (Oncorhynchus tshawytscha), channel catfish, sea bream (Sparus sarba), and common carp (Cyprinus carpio)21,22,23,24,25,26.
Electroporation has been used to deliver plasmid DNA, RNA, and Cas9 protein for gene knockout. In mammalian cells, Cas9/gRNA plasmid DNA, Cas9 mRNA/gRNA, and Cas9 protein/gRNA complexes were delivered using electroporation and the mutagenesis rates were highest using Cas9 protein/gRNA complexes for most electroporation conditions tested27. In the ascidian chordate (Ciona intestinalis), TALENs expressing constructs were electroporated into fertilized eggs to induce knockout of multiple genes28. ZFNs expressing plasmid constructs were electroporated to knock out luteinizing hormone in channel catfish29. However, once introduced into the cell, plasmid constructs will need to be transcribed to RNA and translated to functional proteins before they can target the desired DNA sequence, which would likely delay the time of mutagenesis compared to microinjection of RNA/protein. As an embryo is developing, delayed mutagenesis increases the mosaicism of injected founders. In addition, transgenic expression is unlikely to achieve the expression level possible with microinjection, lowering the mutagenesis efficiency.
As a means for introducing genome editing tools into cells, microinjection has several advantages over electroporation. Genome editing molecules can be reliably introduced into cells or embryos through microinjection30. Less injection material is needed. It is easy to determine the amounts of material injected. Higher mutation rates with low mosaicism in the founder fish can be achieved which would improve germline transmission of mutations to F1. Fewer founder fish need to be analyzed to produce the first generation, due to the higher mutation rate. In electroporation, more founder fish need to be analyzed which will increase costs. However, the survival of channel catfish microinjected embryos is lower than electroporated ones, though this can be overcome by injecting more embryos31,32. In channel catfish, survival of yolk-microinjected embryos ranged from 16 to 55%, depending on the genes being targeted and the dosage of gRNA/Cas9 protein32.
Regular microinjection of catfish embryos is technically demanding and time consuming, however, a rapid and efficient CRISPR/Cas9 protein microinjection protocol is presented for channel catfish embryos. This protocol requires less time and expertise since the CRISPR/Cas9 protein solution is injected into the yolk of one cell embryos. Hundreds of fertilized eggs can be injected in 1 h (approximately the time needed for the first cell division to occur). To validate the protocol, two disease susceptibility-related genes were knocked out in channel catfish, the toll/interleukin 1 receptor domain-containing adapter molecule (TICAM1) gene and the rhamnose binding lectin (RBL) gene. TICAM 1 is involved in the signaling pathway initiated by toll-like receptor (TLR) 3. In channel catfish, TICAM 1 was dramatically upregulated following bacterial challenge with Edwardsiella ictaluri, while it was downregulated in blue catfish, a species resistant to E. ictaluri33. RBL plays an important role in early infection with Flavobacterium columnare, the causative agent of columnaris disease, where acute and robust upregulation was recorded in a columnaris-susceptible channel catfish strain compared to a columnaris-resistant strain34.
This experiment was conducted at the Fish Genetics Research Unit, E. W. Shell Fisheries Research Center, Auburn University, AL. All experimental protocols used in this experiment were approved by the Auburn University Institutional Animal Care and Use Committee (AU-IACUC) before the experiment was initiated. A list of the equipment and supplies used in this experiment can be found in the Materials Table. The following are the steps and procedures for preparation and microinjection of channel catfish one-cell embryos as illustrated in Figure 1.
1. Brood Stock Selection and Spawning
2. Sperm Preparation
NOTE: Sperm can be prepared a few h before the expected ovulation time.
3. Egg Collection and Fertilization
4. Needle Pulling and Loading
5. Microinjection of Catfish Embryos
6. Mutation Detection
To demonstrate the efficiency of the microinjection protocol, gRNAs designed to target the channel catfish toll/interleukin 1 receptor domain-containing adapter molecule (TICAM1) gene and rhamnose binding lectin (RBL) gene were microinjected.
TICAM 1
DNA sequencing of vectors from individual colonies from pooled, cloned PCR products revealed the indel mutations induced in TICAM 1 gene. The mutation rate wa...
A detailed protocol for microinjection of channel catfish embryos to achieve gene knockout was presented. Injection of CRISPR/Cas9 protein in the yolk is much simpler, saves time, and does not require extensive training when compared to microinjecting the blastodisc of the one-cell embryo, which is the common technique for most gene transfer and gene editing with fish30,42. The current protocol proved to be successful in inducing indels in channel catfish TICAM 1...
The authors declare that they have no conflict of interest.
This research was funded by USDA-NIFA award 2015-67015-23488 to Roger Cone. The authors thank Dr. Ronald Phelps for the description of brood stock selection criteria in the video. Ahmed Elaswad and Karim Khalil would like to thank the Egyptian Cultural and Educational Bureau in Washington DC for funding their Ph.D. research.
Name | Company | Catalog Number | Comments |
Reproboost implant | Center of Marine Biotechnology | Luteinizing hormone releasing hormone analog (LHRHa) for induction of ovulation in channel catfish females | |
TRICAINE-S | Western Chemical. Inc. | For sedation of brood stock fish during hormone injection and egg stripping. | |
Phenol red | Sigma-Aldrich | P0290 | 0.5%, sterile filtered |
Stereo microscope | Olympus | 213709 | For visualizing the eggs during microinjection |
Microinjector | ASI-Applied Scientific Instrumentation | Model MPPI-3 | For the delivery of the injection material into the embryos |
Micromanipulator | ASI-Applied Scientific Instrumentation | Model MM33 | For holding and controlling the movement of the injection needle. |
Eppendorf Microloader | Eppendorf | 5242956.003 | For loading injection solution into microinjection needles. |
Vertical needle puller | David Kopf Instruments | Model 720 | For pulling microinjection needles |
Cas9 protein | PNA Bio Inc. | CP01 | Recombinant Cas9 protein from Streptococcus pyrogenes. |
Expand High FidelityPLUS PCR System | Roche Diagnostics, USA | For PCR and amplification of DNA templates to be used in gRNA preparation | |
Borosilicate glass capillaries | Fisher Scientific | 1 mm outer diameter (OD), for making microinjection needles. | |
Petri dish | VWR | 25384-302 | For holding the embryos during the microinjection. |
Crisco | The J.M. Smucker Company | Vegetable shortening for coating spawning pans and petri dishes. | |
Holtfreter`s solution | Home Made | 59 mM NaCl, 0.67 mM KCl, 2.4 mM NaHCO3, 0.76 mM CaCl2, 1.67 mM MgSO4 to incubate the microinjected embryos till hatch. | |
Doxycycline hyclate USP (monohydrate) | Letco Medical | 690904 | Antibiotic added to Holtfreter's solution to 10 ppm to prevent bacterial infections. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved