A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe a technique for combining flow cytometry and high throughput sequencing to identify late replicating regions of the genome.
Numerous techniques have been developed to follow the progress of DNA replication through the S phase of the cell cycle. Most of these techniques have been directed toward elucidation of the location and timing of initiation of genome duplication rather than its completion. However, it is critical that we understand regions of the genome that are last to complete replication, because these regions suffer elevated levels of chromosomal breakage and mutation, and they have been associated with both disease and aging. Here we describe how we have extended a technique that has been used to monitor replication initiation to instead identify those regions of the genome last to complete replication. This approach is based on a combination of flow cytometry and high throughput sequencing. Although this report focuses on the application of this technique to yeast, the approach can be used with any cells that can be sorted in a flow cytometer according to DNA content.
Eukaryotic genome replication is initiated at multiple discrete sites, called origins of replication, from which replication forks proceed in both directions (reviewed in Fragkos et al., 20151). Origins vary in both their timing and efficiency of firing, and several techniques have been developed to monitor replication origin activity and elucidate the causes of this variation. The activity of individual origins can be inferred from levels of single-stranded DNA2, which forms around active origins, or by using 2D gel electrophoresis to monitor specific replication intermediates3, both of which can be detected with radioactive probes. Both of these techniques are more easily applied in S. cerevisiae than in mammalian cells, because origins are limited to specific known sequences in the former. With the advent of microarrays, it became possible to assess origin firing globally. This was first done by labeling DNA with heavy isotopes, releasing cells from a G1 block into medium containing light isotopes, and then monitoring the formation of heavy-light hybrid DNA across the genome4. The introduction of high throughput sequencing allowed similar genome-wide monitoring of origin activity without the requirement of expensive isotopic labeling. Cells were sorted in a flow cytometer according to DNA content and their DNA subjected to deep sequencing. Because sequence coverage proceeds from 1x to 2x over the course of S phase, relative replication timing can be assessed by comparing read depths of cells in S phase to those in G1 or G25,6. These techniques, particularly applied to yeast, led to a deeper understanding of how DNA sequence, chromatin structure, and DNA replication proteins regulate origin timing and efficiency.
Faithful transmission of genetic information during cellular proliferation requires not only successful initiation of DNA replication, which takes place at origins, but also successful completion of replication, which occurs where replication forks meet. Like initiation of replication, the timing of completion of replication varies across the genome with certain regions remaining unreplicated even late in the cell cycle. Such regions may be particularly distant from active replication origins or may contain sequences or chromatin structures that impede DNA polymerases. Late replicating regions can manifest themselves as fragile sites, which are associated with chromosomal breakage and higher mutation rates, and have been implicated in cancer and aging7,8,9. However, despite the importance of proper completion of DNA replication in maintenance of genome stability, our understanding of where and how this takes place has lagged far behind that of replication initiation. And while individual genes whose late replication has been associated with disease have been studied with, for example, qPCR10, global studies directed at elucidating the locations and underlying causes of late replication have been lacking. Here we describe a technique we refer to as "G2 seq" in which we combine flow cytometry with high throughput sequencing to shed light on the completion of genome replication in yeast11. With minor changes, this protocol can be adapted to any cells that can be flow-sorted according to DNA content.
Access restricted. Please log in or start a trial to view this content.
1. Preparation of Cells for Flow Cytometry Sorting
2. Cell Sorting
3. DNA Extraction and the Preparation of Sequencing Libraries
NOTE: The following steps are based on "protocol I" in the Yeast Genomic DNA extraction Kit (see Table of Materials).
4. Analysis of Sequencing Data and Generation of Replication Profiles
Access restricted. Please log in or start a trial to view this content.
We have used the procedure described above to identify late replicating sites in budding yeast. Testing this approach using a known late replicating region on an artificial chromosome proved the technique to be accurate and reliable. Our results have also demonstrated the biological importance of timely completion of replication by showing that a late replicating region on chromosome 7, which we identified as late replicating on the basis of our G2-seq results, was lost approximately thre...
Access restricted. Please log in or start a trial to view this content.
While this technique is robust and relatively straight forward, particular attention should be devoted to the following:
(1) We recommend that cultures grow for at least 12 h before they reach log phase, since differences manifest in cell cycle distributions if cultures are harvested after having reached the desired density just 4 h after inoculation. Our assumption is that a cell cycle distribution that has reached a relatively stable equilibrium better represents a "real" log phase d...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This work was supported by grant NIH GM117446 to A.B.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
YeaStar Genomic DNA kit | Genesee Scientific | 11-323 | |
1 µM SYTOX Green | ThermoFisher | 57020 | resuspend in 50 mM sodium citrate, pH 7.2 |
50 mM sodium citrate, pH 7.2 | |||
RNase solution (0.25 mg / mL) | Sigma | R6513 | 0.25 mg / mL RNaseA resuspended in 50 mM sodium citrate, pH 7.2, boil RNase solution for 10 minutes before the first use only, and from then on store at -20° |
proteinase K solution (20 mg / mL) | ThermoFisher / Invitrogen | 25530-015 | resuspend in 10 mM Tris, pH 7.5, 2 mM CaCl2, 50% glycerol, store at -20°C |
Model 50 Sonic Dismembrator | Fisher Scientific | FB50A220 | |
BD Biosciences FACSAria II | BD Biosciences | 644832 | |
Zymo-spin III columns | Zymo Research | C1005 | |
Qubit dsDNA HS Assay Kit | ThermoFisher | Q32851 | |
Qubit 3.0 Fluorometer | ThermoFisher | Q33216 | |
Covaris Model LE220 Focused-Ultrasonicator | Covaris | 500219 | |
Illumina TruSeq DNA LT Sample Prep Kit | Illumina | 15026486 | |
Illumina HiSeq 2500 instrument | Illumina | SY–401–2501 | |
gsnap alignment software | open source software / Genentech | http://research-pub.gene.com/gmap |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved