A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here, we present a procedure to fluorescently functionalize the disulfides on Qβ VLP with dibromomaleimide. We describe Qβ expression and purification, the synthesis of dibromomaleimide-functionalized molecules, and the conjugation reaction between dibromomaleimide and Qβ. The resulting yellow fluorescent conjugated particle can be used as a fluorescence probe inside cells.
The recent rise in virus-like particles (VLPs) in biomedical and materials research can be attributed to their ease of biosynthesis, discrete size, genetic programmability, and biodegradability. While they're highly amenable to bioconjugation reactions for adding synthetic ligands onto their surface, the range in bioconjugation methodologies on these aqueous born capsids is relatively limited. To facilitate the direction of functional biomaterials research, non-traditional bioconjugation reactions must be considered. The reaction described in this protocol uses dibromomaleimides to introduce new functionality in the solvent exposed disulfide bonds of a VLP based upon Bacteriophage Qβ. Furthermore, the final product is fluorescent, which has the added benefit of generating a trackable in vitro probe using a commercially available filter set.
Using nano-sized viral capsids has emerged as an exciting field, which aims to broaden the scope of applications in biomedical research1,2,3. Recombinantly expressed virus-like particles (VLPs) are structurally derived from viruses, but they lack the original viral genetic material making them non-infectious proteinaceous nanoparticles. As the surface features are genetically programed and each capsid is expressed identically to the ones before and after it, it is possible to know the location and number of reactive side chains of the amino acids with atomistic precision. In many cases, both the exterior and interior surfaces possess many kinds of solvent exposed amino acid residues, which can feasibly be functionalized through bioconjugation reactions - reactions that form covalent bonds between a biomolecule and a synthetic molecule4,5.
Bioconjugation reactions help biomolecules of interest have more diverse functionalities in a relatively straightforward fashion. Molecules of interest, such as therapeutic drugs6, fluorescent tags7 and polymers8,9 can be pre-synthesized and characterized before they are attached on the surface of VLPs. A particularly common VLP in biomedical and biomaterials research has been the VLP based upon Bacteriophage Qβ, which, as recombinantly expressed, is a 28 nm icosahedral viral capsid10. The most common reaction sites on Qβ are lysines by a wide margin, though we have recently communicated the successful conjugation11 of dibromomaleimide compounds to the reduced disulfides that line the pores of Qβ via a Haddleton-Baker reaction. The reaction proceeds with good yield and, equally importantly, without losing the thermal stability of the particles. At the same time, this reaction generates conjugation-induced fluorescence, which can be used to track the uptake of these particles into cells. In this work, we demonstrate the conjugation of polyethylene glycol (PEG) onto the surface of Qβ through the Haddleton-Baker reaction, which results in a bright yellow fluorophore. These particles can then be tracked as they are taken in by cells. The protocol herein will help researchers generate new fluorescent PEGylated proteinaceous nanoparticles based upon Qβ, though its principles are applicable to one of the many other VLPs containing solvent exposed disulfides.
1. Preparation
2. Expression of Qβ
3. Purification of Qβ
4. Quantification and Confirmation of the Product
5. Conjugating DB Compounds on Qβ
The dibromomaleimide derivatives can be synthesized through the condensation reaction between dibromomaleimide anhydride and primary amines15. Alternatively, a mild synthetic method16 using N-methoxycarbonyl activated 3,4-dibromomaleimide was exploited here by reacting with methoxypolyethylene glycol (PEG) to yield DB-PEG (Figure 1). NMR was used to identify the compound structure (Figure 2<...
Compared to smaller protein purification, a unique step in purifying bacteriophage Qβ is the sucrose gradient centrifugation. After the chloroform/n-butanol extraction step, Qβ is further purified using 5-40% sucrose gradients. During centrifugation, particles are separated based on their sizes. Larger particles travel to the higher density region, while smaller particles stay in the lower density region. Qβ travels to the lower third of the gradient and remains there while smaller protein impurities are t...
The authors declare that they have no competing financial interests.
J.J.G. acknowledges the National Science foundation (DMR-1654405) and Cancer Prevention Research Institute of Texas (CPRIT) (RP170752s) for their support.
Name | Company | Catalog Number | Comments |
LB Broth (Miller) | EMD Millipore | 1.10285.0500 | |
Tryptone, Poweder | Research Products International | T60060-1000.0 | |
Yeast Extract, Poweder | Research Products International | Y20020-1000.0 | |
Anhydrous magnesium sulfate | P212121 | CI-06808-1KG | |
Sodium Chloride (Crystalline/Certified ACS) | Fisher Scientific | S271-10 | |
Potassium Chloride | Fisher Scientific | BP366-500 | |
Elga PURELAB Flex 3 Water Purification System | Fisher Scientific | 4474524 | |
Potassium Phosphate Monobasic | Fisher Scientific | BP362-1 | |
Potassium Phosphate Dibasic Anhydrous | Fisher Scientific | P288-500 | |
Sucrose | Fisher Scientific | S25590B | |
Ethanol | Fisher Scientific | BP2818500 | |
Isopropyl β-D-1-thiogalactopyranoside (IPTG) | Sigma Aldrich | I6758-1G | |
Fiberlite F10-4x1000 LEX rotor | Fisher Scientific | 096-041053 | |
Ammonium Sulfate | P212121 | KW-0066-5KG | |
Chloroform | Alfa Aesar | 32614-M6 | |
1-Butanol | Fisher Scientific | A399-4 | |
SW 28 Ti Rotor, Swinging Bucket, Aluminum | Beckman Coulter | 342204: SW 28 Ti Rotor/ 342217: Bucket Set | |
Type 70 Ti Rotor, Fixed Angle, Titanium, 8 x 39 mL, | Beckman Coulter | 337922 | |
Coomassie (Bradford) Protein Assay | Fisher Scientific | PI23200 | |
TRIS Hydrochloride | Research Products International | T60050-1000.0 | |
Tetramethylethylenediamine | Alfa Aesar | J63734-AC | |
Tris(2-carboxyethyl)phosphine hydrochloride | Sigma Aldrich | C4706-2G | |
2 3-Dibromomaleimide 97% | Sigma Aldrich | 553603-5G | |
Polythylene Glycol | Alfa Aesar | 41561-22 | |
Sodium Phosphate | Fisher Scientific | AC424375000 | |
Acrylamide/bis-Acrylamide | P212121 | RP-A11310-500.0 | |
Sodium dodecyl sulfate | Sigma Aldrich | L3771-100G | |
Ammonium Persulfate | Fisher Scientific | BP179-100 | |
FV3000 confocal laser scanning microscope | Olympus | FV3000 | |
Labnet Revolver Adjustable Rotator | Thomas Scientific | 1190P25 | |
1000 mL Sorvall High Performance Bottle, PC, with Aluminum Cap | Thermo Scientific | 010-1459 | |
Nalgene Centrifuge Bottles with Caps, Polypropylene Copolymer | Thermo Scientific | 3141-0250 | |
Nunc Round-bottom tubes; 38 mL; PC | Thermo Scientific | 3117-0380 | |
2 L Narrow Mouth Erlenmeyer Flasks with Heavy Duty Rim | Pyrex | 4980-2L | |
Amicon Ultra-4 Centrifugal Filter Units | Millipore Sigma | UFC801024 | |
M-110P Microfluidizer Materials Processor | Microfluidics | M-110P | |
Nalgene High-Speed Polycarbonate Round Bottom Centrifuge Tubes | Thermo Scientific | 3117-0380PK | |
Bottle, with Cap Assembly, Polycarbonate | Beckman Coulter | 41121703 | |
Cylinder, Graduated - Polypropylene 250 mL | PolyLab | 80005 | |
533LS-E Series Steam Sterilizers | Getinge | 533LS-E | |
TrueLine, Cell Culture Plate, Treated, PS, 96 Well, with Lid | LabSource | D36-313-CS | |
Falcon 15 mL Conical Centrifuge Tube | Fisher Scientific | 14-959-53A | |
Microcentifuge Tube: 1.5mL | Fisher Scientific | 05-408-129 | |
VWR Os-500 Orbital Shaker | VWR Scientifc Products | 14005-830 | |
Tetra Handcast systems | Bio-Rad | 1658000FC | |
Polypropylene, 250 mL | Beckman Coulter | 41121703 | |
Spectrofluorometer NanoDrop | Thermo Fisher Scientific | 3300 | |
Long Needle | Hamilton | 7693 | |
Exel International 5 to 6 cc Syringes Luer Lock | Fisher Scientific | 14-841-46 | |
P1000 Pipetman | Gilson | F123602 | |
P200 Pipetman | Gilson | F123601 | |
P100 Pipetman | Gilson | F123615 | |
P20 Pipetman | Gilson | F123600 | |
P10 Pipetman | Gilson | F144802 | |
Intel Weighing PM-100 Laboratory Classic High Precision Laboratory Balance | Intelligent Weighting Technology | IWT_PM100 | |
Falcon 50 mL Conical Centrifuge Tube | Fisher Scientific | 14-432-22 | |
4–15% Mini-PROTEAN TGX Gel, 10 well, 50 µl | Bio-Rad | 456-1084 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved