JoVE Logo

로그인

JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.

기사 소개

  • 요약
  • 초록
  • 서문
  • 프로토콜
  • 결과
  • 토론
  • 공개
  • 감사의 말
  • 자료
  • 참고문헌
  • 재인쇄 및 허가

요약

여기, 선물이 붙일 functionalize dibromomaleimide와 Qβ VLP에 disulfides에 절차. 우리는 Qβ 식 및 정화, dibromomaleimide 기능성된 분자의 합성 및 dibromomaleimide와 Qβ 사이 활용 반응 설명합니다. 결과 노란색 형광 활용된 입자 셀 안에 형광 프로브로 사용할 수 있습니다.

초록

바이러스 같은 입자 (VLPs) 생물 의학에 있는 최근 증가 및 재료 연구 생 합성, 개별 크기, 유전자 프로그래밍 및 biodegradability의 그들의 용이 함에 표시 될 수 있습니다. 그들은 그들의 표면에 합성 ligands를 추가 하기 위한 bioconjugation 반응에 매우 의무가 있어, 이러한 수성 태어난된 capsids에 bioconjugation 방법론에서 범위 상대적으로 제한 됩니다. 촉진 하기 위해 기능성 생체 재료 연구의 방향, 비 전통적인 bioconjugation 반응은 고려 되어야 한다. 이 프로토콜에서 설명 하는 반응 dibromomaleimides를 사용 하 여 살 균 소 Qβ를 기반으로 한 VLP의 노출된 이황화 결합 용 매에서 새로운 기능을 소개. 또한, 최종 제품은 형광, 추적이 가능한 생체 외에서 프로브를 상업적으로 사용할 수 있는 필터 세트를 사용 하 여 생성의 이점이 있다 이다.

서문

바이러스 성 capsids 나노 크기를 사용 하 여 생물 의학 연구1,2,3응용 프로그램의 범위를 확대 하는 것을 목표로 하는 흥미 진 진한 필드로 떠오르고 있다. Recombinantly 표현된 바이러스 같은 입자 (VLPs)는 구조적으로 바이러스에서 파생 된 하지만 그들은 그들에 게 비 전염 성 배치할 나노 입자를 만드는 원래 바이러스 유전 물질 부족 합니다. 표면 기능 프로그램 유전자는 고 각 capsid 앞뒤 사람에 게 동일 하 게 표현 된다, 위치 및 원자 정밀도로 아미노산의 반응 측면 체인의 수를 알아야 가능 하다. 대부분의 경우에서 외부와 실내 표면 bioconjugation 반응-는 biomolecule와 합성 사이 공유 결합을 형성 하는 반응을 통해 functionalized feasibly 수 있습니다 용 매 노출된 아미노산 잔류물의 많은 종류를가지고 분자4,5.

Bioconjugation 반응 생체의 비교적 간단한 패션에서 더 다양 한 기능을가지고 도움이 됩니다. 분자의, 치료 약6, 형광 태그7 등 폴리머8,9 미리 합성 하 고 특징 VLPs의 표면에 연결 하기 전에 수 있습니다. 생물 의학에서 특히 일반적인 VLP 바이오 소재 연구, recombinantly 표현으로 28 nm icosahedral 바이러스 성 capsid10살 균 소 Qβ에 따라 VLP 되었습니다. 비록 우리가 최근에 Haddleton 베이커 반응을 통해 Qβ의 숨 구멍 줄 감소 disulfides dibromomaleimide 화합물의 성공적인 활용11 전달 Qβ에 가장 일반적인 반응 사이트 넓은 여백에 의해 lysines 있습니다. 반응 좋은 진행 항복 하 고, 동등 하 게 중요 한 것은, 입자의 열 안정성을 잃고 없이. 동시에이 반응을 활용 유도 형광, 셀으로이 입자의 통풍 관을 추적 하는 데 사용할 수 있습니다 생성 합니다. 이 작품에서는, 우리 Haddleton 베이커 반응, 밝은 노란색 fluorophore를 통해 Qβ의 표면에 폴 리 에틸렌 글리콜 (PEG)의 활용을 보여 줍니다. 이러한 입자 세포에 의해 그들은 촬영으로 추적할 수 있습니다. 본 프로토콜 연구원 원리 용 노출된 disulfides 포함 된 많은 다른 VLPs 중 하나에 적용 되는 새로운 형광 PEGylated 배치할 나노 입자를 기반으로 Qβ, 생성 도움이 됩니다.

프로토콜

1입니다. 준비

  1. Lysogeny 국물 (파운드) 한 천 만들고 접시12부.
  2. 변환 BL21(DE3) wtQβ 외 투 단백질 시퀀스를 포함 하는 pET28 플라스 미드와.
    1. 대장균 BL21(DE3) 유능한 세포를 얼음 목욕에 녹여 Microcentrifuge 튜브에서 셀의 장소 50 μ.
    2. 1 개의 관으로 플라스 미드의 2 μ를 추가 하 고 부드럽게 튜브를 끄 적. 다음 30 분 동안 얼음에 품 어.
    3. 열-충격 45 셀 정확히 42 ° c.에 있는 물 욕조에 s 열 충격 직후 얼음 욕조에 다시 튜브를 배치 하 고 5 분 동안 품 어.
    4. 어떤 항생제를 포함 하지 않는 파운드 미디어의 950 μ를 추가 합니다.
    5. 37 ° c.에 60 분 200 rpm에서 문화를 흔들어
    6. (대)와 파운드 한 천 배지에서 문화의 100 μ 접시 하 고 37 ° c.에 하룻밤 접시를 품 어 필요할 때 백색 식민지를 선택 합니다.
  3. 슈퍼 최적의 국물 (흐 느낌) 미디어를 확인 합니다.
    1. 압력솥 L 2 개의 삼각 플라스 크를 당황 하 게 제시카 주기.
    2. 무 균 환경에서 밖으로 무게 추가 tryptone의 20.0 g, 5.0 g의 효 모 추출 물, 무수 황산 마그네슘의 2.469 g 0.584 g 염화 나트륨의 및 각 플라스 크에 염화 칼륨 0.186 g.
    3. 볼륨 1 L를 함께 초순 각 플라스 크에 고압 액체 주기.
    4. 흐 느낌 미디어는 압력가 마로 소독 후 실내 온도 도달 하면, 미디어의 각 리터를 대 (100 mg/mL)의 1 mL을 추가 하 고 4 ° c.에 저장
  4. 0.1 m M 칼륨 인산 염 버퍼 (pH 7.00)을 확인 합니다.
    1. 초순의 500 ml에서 이수소 칼륨 68.045 g을 용 해 하 여 1 M 칼륨 이수소 솔루션을 확인 합니다.
    2. 칼륨 초순 물 500 mL에 염기의 87.09 g을 용 해 하 여 1 M 칼륨 염기 솔루션을 확인 합니다.
    3. 1 리터 병에 칼륨 이수소 솔루션 및 칼륨 염기의 61.5 mL 38.5 mL를 추가 합니다.
    4. 7.00, 필요한 경우에 pH를 조정 하 고 1 나의 볼륨을
  5. 0.1 m M 칼륨 인산 염 버퍼 (pH 7.00)에 5-40% 자당 그라디언트를 확인 합니다.
    1. 50 mL 원심 분리기 튜브에서 0.1 M 칼륨 인산 염 버퍼 (pH 7.00)에 용 해 하는 5-40% (5% 단위로 증가) 자당으로 솔루션을 준비 합니다.
    2. 긴 바늘 주사기를 사용 하 여 38 mL 라운드-하단 폴 리 카보 네이트 튜브의 하단에 5% 자당 해결책의 3.3 mL를 입금 하 고 5 개의 다른 튜브에 대 한이 반복 합니다.
    3. 조심 스럽게 3.3 mL 튜브의 하단에 10% 자당 해결책의 보증금과 그라디언트를 방해 하지로 바늘을 조심 스럽게 제거. 다른 5 개의 튜브를 반복 합니다.
       
  6. 3.3 mL 레이어 자당 솔루션, 그라디언트를 방해 하지 않는 신중 하면서 각 관에서 40%로 15%에서 증가의 입금을 계속 합니다.
  7. 완료 되 면, 호 기온 변화도의 정상을 커버 하 고-80 ° c.에 저장

2입니다. Qβ의 표현

  1. 1:1 표 백제/에탄올 벤치 영역을 닦으십시오.
  2. 무 균 환경에서 흐 느껴 울 다 미디어의 3 mL에 대장균 BL21(DE3)의 단일 식민지를 추가 하 여 무 균 환경에서 2 개의 3 mL 스타터 문화를 확인 합니다.
  3. 37 ° C, 0% 상대 습도 (rH) 룸에서 250 rpm에서 통에 하룻밤 성장.
  4. 개 자식 미디어에서 선발 문화 예방:
    1. 두 3 mL 스타터 문화 셰이 커 고, 무 균 환경에서 2 중으로 각 시 동기 문화를 부 어 2 L 1 l 각 신선한 흐 미디어의 삼각 플라스 크를 당황 하 게.
    2. 37 ° C, 0 %rH 룸에서 250 rpm에서 통에 접종된 미디어를 배치 합니다.
  5. OD600 0.9-1.0에 도달할 때까지 37 ° C, 0 %rH 룸에서 250 rpm에서 통에 박테리아를 성장.
  6. 1 M 이소프로필 β-D-1 thiogalactopyranoside (IPTG) P1000 피 펫을 사용 하 여 단백질 발현을 유도 하는 것의 1 개 mL를 추가 합니다.
  7. 37 ° C, 0 %rH 룸에서 250 rpm에서 셰이 커에는 미디어를 하룻밤 둡니다.
  8. 미디어에서에서 제거 흔드는 다음 아침 및 원심 분리기를 사용 하 여 1000 mL 병 20,621 × g에서 4 ° C에서 1 시간에 대 한 셀을 수확 합니다.
  9. 삭제는 상쾌한 고 셀 펠 릿을 수집 합니다.
    1. 박테리아를 죽 일 백제의 약 5 mL로 플라스 크에는 상쾌한 하 거 라. 이것은 폐기물 이다.
    2. 주걱을 사용 하 여 원심 분리기 병의 하단에서 셀 펠 릿을 긁 고 50ml 원심 분리기 튜브에 펠 릿을 넣어.

3입니다. Qβ의 정화

  1. Resuspend 셀 펠 릿 ~ 20-30 mL의 0.1 M 칼륨 인산 염 버퍼 (pH 7.00).
  2. 물의 resuspension 없는 덩어리는 다는 것을 확인 하 고 제조업체의 프로토콜에 따라 microfluidizer 프로세서를 사용 하 여 세포를 lyse ( 재료의 표참조). 입자의 수확량을 증가 시키기에 두 번 이상 세포를 lyse.
  3. 4 ° c.에 1 시간에 250 mL 20,621 x g에서 원심 분리기 병에는 lysate 원심
  4. 펠 릿을 삭제 하 고 상쾌한 ml에서의 볼륨을 측정 한다. 0.265로 그 값을 곱하면 고는 상쾌한 황산 암모늄의 g의 금액 추가.
  5. 단백질에 밖으로 침전 시키기 위하여 200 rpm에서 저 어 접시에 적어도 1 시간에 4 ° C에서 저 어.
  6. 20,621 x g 4 ° c.에 1 시간에 250 mL 병에서 원심
  7. 상쾌한 무시 하 고 약 10 mL의 0.1 M 칼륨 인산 염 버퍼 (pH 7.00)와 펠 릿을 resuspend.
  8. 몇 초 동안 vortexing에 의해 원유 샘플 및 혼합 1:1 클로 프롬/n-butanol 동등한 양의 추가 합니다.
  9. 4 ° c.에 30 분 동안 20,621 × g에서 38 mL 튜브에 원심
  10. 파스퇴르 피 펫을 사용 하 여 최고 수성 층을 복구 합니다. 수성 및 유기 층 사이 형성 했다 레이어 같은 젤을 사용할 않기로 주의 해야 합니다.
  11. 6 5-40 %pre-made 자당 기온 변화도 녹여 고 약 2 mL에 각 추출의 로드 합니다.
  12. 무료 감속으로 4 ° C에서 16 h 99,582 x g에서 ultracentrifuge.
  13. 발광 다이오드 (LED) 조명 각 튜브 아래 빛나는 고 블루 밴드 표시 한다. 긴 바늘 주사기이 입자를 복구 합니다.
  14. Ultrapellet 370,541 x g 2.5 h 4 ° c.에 대 한에서 입자
  15. 상쾌한 무시 하 고 0.1 M 칼륨 인산 염 버퍼 (pH 7.00) 순화 된 입자의 투명 한 펠 릿 resuspend.

4. 정량화 및 제품의 확인

  1. Bradford 분석 실험을 사용 하 여 계량 제품13.
  2. 실행 줄이고 비 감소 나트륨 라우릴 황산 polyacrylamide 젤 전기 영동 (SDS-PAGE) 제품14확인.
    참고:; 외 투 단백질의 분자량을 확인 하는 데 사용은 SDS 페이지 감소 비 줄이는 SDS 페이지 더 높은 순서 구조를 확인 하는 것은.

5. 어근 Qβ에 DB 화합물

  1. Qβ에 disulfides 줄일 수 있습니다.
    1. 해산의 0.0020 g tris(2-carboxyethyl) 초순 100 x 재고 솔루션의 1 mL에 phosphine (TCEP).
      참고: 신선한 TCEP 감소 하기 전에 준비.
    2. Microcentrifuge 튜브에 Qβ (5 mg/mL)의 200 µ L를 추가 합니다.
    3. 100 x TCEP 재고 솔루션의 20 µ L을 추가 하 여 따라.
    4. 1 시간에 대 한 실 온에서 품 어.
  2. 다시 dibromomaleimide 폴 리 에틸렌 글리콜 (PEG DB)을 사용 하 여 감소 이황화 다리.
    1. Dibromomaleimide-폴 리 에틸렌 글리콜 (DB-PEG) DMF의 100 µ L의 0.0017 g을 분해.
    2. 10 m m 나트륨 인산 염 해결책 (pH 5.00)의 680 µ L를 추가 합니다.
    3. 추가 DB-말뚝의 솔루션으로 Qβ를 감소 하 고 365 nm UV 램프에서 혼합 과정을 관찰. 밝은 노란색 형광 혼합 시 365 nm 휴대용 UV 램프로 즉시 구상 될 수 있다.
    4. 하룻밤 실 온 (RT)는 불고기 집에 진행 하는 반응 하 게.
  3. 원심 필터 반응 혼합물을 정화 (COMW = 10 kDa) 세 번 사용 하 여 1 x PBS 3,283 x g에서 4 ° c.에서 20 분
  4. 줄임으로써 비-SDS 페이지 및 네이티브 agarose 젤 전기 이동 법은 활용을 모니터링 합니다.
    참고: VLPs 네이티브 agarose 젤에 그대로 입자로 실행 하 고 그들은 그들의 충전, 크기와 모양에 따라 구분 됩니다.

결과

Dibromomaleimide 파생 상품 dibromomaleimide 무수 물 및 1 차 아민15사이 응축 반응을 통해 합성 될 수 있다. 또는 N-methoxycarbonyl 활성화 3, 4-dibromomaleimide를 사용 하 여 가벼운 합성 방법16 methoxypolyethylene 글리콜 (PEG) 수익률 DB-페그 (그림 1)에 반응 하 여 여기 악용 했다. NMR 화합물 구조 (그림 2)를 식별 하?...

토론

작은 단백질 정화에 비해, 살 균 소 Qβ 정화는 독특한 단계 자당 기온 변화도 원심 분리입니다. 클로 프롬/n-butanol 추출 단계 후 Qβ 5-40% 자당 기온 변화도 사용 하 여 더 순화 이다. 원심 분리, 중 입자는 그들의 크기에 따라 구분 됩니다. 더 큰 입자 작은 입자는 낮은 밀도 영역에 체류 하는 동안 더 높은 밀도 영역에 여행. Qβ는 그라데이션의 더 낮은 세 번째에 여행 하 고 더 작은 단백질 불순물은 원...

공개

저자 들은 아무 경쟁 금융 관심사 선언 합니다.

감사의 말

J.J.G.는 그들의 지원에 대 한 국립 과학 재단 (DMR-1654405) 및 암 예방 연구 연구소의 텍사스 (CPRIT) (RP170752s)을 인정 한다.

자료

NameCompanyCatalog NumberComments
LB Broth (Miller) EMD Millipore1.10285.0500
Tryptone, PowederResearch Products InternationalT60060-1000.0
Yeast Extract, PowederResearch Products InternationalY20020-1000.0
Anhydrous magnesium sulfateP212121CI-06808-1KG
Sodium Chloride (Crystalline/Certified ACS)Fisher ScientificS271-10
Potassium ChlorideFisher ScientificBP366-500
Elga PURELAB Flex 3 Water Purification SystemFisher Scientific4474524
Potassium Phosphate MonobasicFisher ScientificBP362-1
Potassium Phosphate Dibasic AnhydrousFisher ScientificP288-500
SucroseFisher ScientificS25590B
EthanolFisher ScientificBP2818500
Isopropyl β-D-1-thiogalactopyranoside (IPTG)Sigma AldrichI6758-1G
Fiberlite F10-4x1000 LEX rotor Fisher Scientific096-041053
Ammonium SulfateP212121KW-0066-5KG
ChloroformAlfa Aesar32614-M6
1-ButanolFisher ScientificA399-4
SW 28 Ti Rotor, Swinging Bucket, AluminumBeckman Coulter342204: SW 28 Ti Rotor/ 342217: Bucket Set
Type 70 Ti Rotor, Fixed Angle, Titanium, 8 x 39 mL,Beckman Coulter337922
Coomassie (Bradford) Protein AssayFisher ScientificPI23200
TRIS HydrochlorideResearch Products InternationalT60050-1000.0
TetramethylethylenediamineAlfa AesarJ63734-AC
Tris(2-carboxyethyl)phosphine hydrochlorideSigma AldrichC4706-2G
2 3-Dibromomaleimide 97%Sigma Aldrich553603-5G
Polythylene GlycolAlfa Aesar41561-22
Sodium PhosphateFisher ScientificAC424375000
Acrylamide/bis-AcrylamideP212121RP-A11310-500.0
Sodium dodecyl sulfateSigma AldrichL3771-100G
Ammonium PersulfateFisher ScientificBP179-100
FV3000 confocal laser scanning microscopeOlympus FV3000 
Labnet Revolver Adjustable Rotator Thomas Scientific 1190P25 
1000 mL Sorvall High Performance Bottle, PC, with Aluminum Cap Thermo Scientific010-1459
Nalgene Centrifuge Bottles with Caps, Polypropylene CopolymerThermo Scientific3141-0250
Nunc Round-bottom tubes; 38 mL; PCThermo Scientific3117-0380
2 L Narrow Mouth Erlenmeyer Flasks with Heavy Duty RimPyrex4980-2L
Amicon Ultra-4 Centrifugal Filter UnitsMillipore SigmaUFC801024
M-110P Microfluidizer Materials ProcessorMicrofluidicsM-110P
Nalgene High-Speed Polycarbonate Round Bottom Centrifuge TubesThermo Scientific3117-0380PK
Bottle, with Cap Assembly, PolycarbonateBeckman Coulter41121703
Cylinder, Graduated - Polypropylene 250 mLPolyLab80005
533LS-E Series Steam SterilizersGetinge533LS-E
TrueLine, Cell Culture Plate, Treated, PS, 96 Well, with LidLabSourceD36-313-CS
Falcon 15 mL Conical Centrifuge TubeFisher Scientific14-959-53A
Microcentifuge Tube: 1.5mLFisher Scientific05-408-129
VWR Os-500 Orbital ShakerVWR Scientifc Products14005-830
Tetra Handcast systemsBio-Rad1658000FC
Polypropylene, 250 mLBeckman Coulter41121703
Spectrofluorometer NanoDropThermo Fisher Scientific3300
Long Needle Hamilton 7693
Exel International 5 to 6 cc Syringes Luer LockFisher Scientific14-841-46
P1000 PipetmanGilsonF123602
P200 PipetmanGilsonF123601
P100 PipetmanGilsonF123615
P20 PipetmanGilsonF123600
P10 PipetmanGilsonF144802
Intel Weighing PM-100 Laboratory Classic High Precision Laboratory BalanceIntelligent Weighting TechnologyIWT_PM100
Falcon 50 mL Conical Centrifuge TubeFisher Scientific14-432-22
4–15% Mini-PROTEAN TGX Gel, 10 well, 50 µlBio-Rad456-1084

참고문헌

  1. Pokorski, J., Breitenkamp, K., Liepold, L., Qazi, S., Finn, M. G. Functional Virus-Based Polymer-Protein Nanoparticles by Atom Transfer Radical Polymerization. J. Am. Chem. Soc. 133 (24), 9242-9245 (2011).
  2. Capehart, S., Coylet, M., Glasgow, J., Francis, M. Controlled Integration of Gold Nanoparticles and Organic Fluorophores Using Synthetically Modified MS2 Viral Capsids. J. Am. Chem. Soc. 135 (8), 3011-3016 (2013).
  3. Li, S., et al. Template-Directed Synthesis of Porous and Protective Core-Shell Bionanoparticles. Angew. Chem. Int. Ed. 55 (36), 10691-10696 (2016).
  4. Chen, Z., Li, N., Li, S., Dharmarwardana, M., Schlimme, A., Gassensmith, J. J. Viral Chemistry: The Chemical Functionalization of Viral Architectures to Create New Technology. WIREs. Nanomed. Nanobiotechnol. 8 (4), 512-534 (2015).
  5. Chalker, J. M., Bernardes, G. J. L., Lin, Y. A., Davis, B. G. Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem. - Asian J. 4 (5), 630-640 (2009).
  6. Le, D. H., Lee, K. L., Shukla, S., Commandeur, U., Steinmetz, N. F. Potato Virus X, a Filamentous Plant Viral Nanoparticle for Doxorubicin Delivery in Cancer Therapy. Nanoscale. 9 (6), 2348-2357 (2017).
  7. Chen, L., Wu, Y., Yuan, L., Wang, Q. Virus-templated FRET Platform for the Rational Design of Ratiometric Fluorescent Nanosensors. Chem. Comm. 51 (50), 10190-10193 (2015).
  8. Lee, P., et al. Polymer Structure and Conformation Alter the Antigenicity of Virus-like Particle-Polymer Conjugates. J. Am. Chem. Soc. 139 (9), 3312-3315 (2017).
  9. Zhang, X., et al. Polymer-Protein Core-Shell Nanoparticles for Enhanced Antigen Immunogenicity. ACS Macro Lett. 6 (4), 442-446 (2017).
  10. Brown, S. D., Fielder, J. D., Finn, M. G. Assembly of Hybrid Bacteriophage Qbeta virus-like particles. Biochemistry. 48 (47), 11155-11157 (2009).
  11. Chen, Z., et al. Fluorescent Functionalization across Quaternary Structure in a Virus- like Particle. Bioconjugate Chem. 28 (9), 2277-2283 (2017).
  12. . Pouring LB Agar Plates Available from: https://www.addgene.org/protocols/pouring-lb-agar-plates/ (2016)
  13. Smith, M., et al. Protein Modification, Bioconjugation, and Disulfide Bridging Using Bromomaleimides. J. Am. Chem. Soc. 132 (6), 1960-1965 (2010).
  14. Castaneda, L., et al. A Mild Synthesis of N-functionalised Bromomaleimides, Thiomaleimides and Bromopyridazinediones. Tetrahedron Lett. 54 (27), 3493-3495 (2013).
  15. Fiedler, J., et al. Engineered Mutations Change the Structure and Stability of a Virus- Like Particle. Biomacromolecules. 13 (8), 2339-2348 (2012).
  16. Manzenrieder, F., Luxenhofer, R., Retzlaff, M., Jordan, R., Finn, M. G. Stabilization of Virus-like Particles with Poly(2-oxazoline)s. Angew. Chem. Int. Ed. 50 (11), 2601-2605 (2011).
  17. Chen, Z., Li, N., Chen, L., Lee, J., Gassensmith, J. J. Dual Functionalized Bacteriophage Qβ as a Photocaged Drug Carrier. Small. 12 (33), 4563-4571 (2016).

재인쇄 및 허가

JoVE'article의 텍스트 или 그림을 다시 사용하시려면 허가 살펴보기

허가 살펴보기

더 많은 기사 탐색

Q Qbetafunctionalizing capsidsbioconjugationdibromomaleimidePEG135

This article has been published

Video Coming Soon

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유