A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
A non-labeled, non-radio-isotopic method for DNA polymerase proofreading and a DNA repair assay was developed by using high-resolution MALDI-TOF mass spectrometry and a single nucleotide extension strategy. The assay proved to be very specific, simple, rapid, and easy to perform for proofreading and repair patches shorter than 9-nucleotides.
The maintenance of the genome and its faithful replication is paramount for conserving genetic information. To assess high fidelity replication, we have developed a simple non-labeled and non-radio-isotopic method using a matrix-assisted laser desorption ionization with time-of-flight (MALDI-TOF) mass spectrometry (MS) analysis for a proofreading study. Here, a DNA polymerase [e.g., the Klenow fragment (KF) of Escherichia coli DNA polymerase I (pol I) in this study] in the presence of all four dideoxyribonucleotide triphosphates is used to process a mismatched primer-template duplex. The mismatched primer is then proofread/extended and subjected to MALDI-TOF MS. The products are distinguished by the mass change of the primer down to single nucleotide variations. Importantly, a proofreading can also be determined for internal single mismatches, albeit at different efficiencies. Mismatches located at 2-4-nucleotides (nt) from the 3' end were efficiently proofread by pol I, and a mismatch at 5 nt from the primer terminus showed only a partial correction. No proofreading occurred for internal mismatches located at 6 - 9 nt from the primer 3' end. This method can also be applied to DNA repair assays (e.g., assessing a base-lesion repair of substrates for the endo V repair pathway). Primers containing 3' penultimate deoxyinosine (dI) lesions could be corrected by pol I. Indeed, penultimate T-I, G-I, and A-I substrates had their last 2 dI-containing nucleotides excised by pol I before adding a correct ddN 5'-monophosphate (ddNMP) while penultimate C-I mismatches were tolerated by pol I, allowing the primer to be extended without repair, demonstrating the sensitivity and resolution of the MS assay to measure DNA repair.
The proofreading functions of DNA polymerases during DNA replication are essential to ensure the high fidelity of genetic information that needs to be transferred to progeny1,2,3,4,5,6,7. Being able to assess the contributions of polymerase proofreading exonucleases would clarify the mechanisms safeguarding genetic stability.
Radioisotope labeling and gel-based assays in combination with densitometric analyses of the autoradiograms or phosphor imaging8,9,10 have traditionally been used to detect proofreading activity of DNA polymerases. While functional, these assays are laborious, expensive, and not amenable to high-throughput formats. In addition, radioisotopes suffer safety issues including waste disposal. Alternatively, proofreading activities have been analyzed by fluorometric techniques. For example, 2-aminopurine (2-AP) can be incorporated into extension products during in vitro polymerase proofreading assays to produce a fluorescent signal11,12. Unfortunately, these approaches suffer from a low specificity, since 2-AP can pair with both thymine and cytosine. More recent approaches include a sensitive G-quadruplex-based luminescent switch-on probe for a polymerase 3'-5' exonuclease assay13 as well as a singly-labeled fluorescent probe for a polymerase proofreading assay that overcomes some of the aforementioned drawbacks14. Enthusiasm for these fluorometric methods is diminished due to the need for the specific labeling of DNA substrates.
In contrast, a MALDI-TOF MS for DNA analysis has been employed in the PinPoint assay, where the primer extension reactions with unlabeled 4 ddNTPs can be used to identify polymorphisms at a given locus15,16,17 and has been widely adopted in clinical applications for mutation detections and cancer diagnoses18. Using these basic principles, we have created a label-free assay for the in vitro determination of DNA polymerase proofreading activity exploiting the high resolution, high specificity, and high-throughput potential of MALDI-TOF MS. Using the E. coli DNA polymerase I Klenow fragment as a model enzyme, dideoxyribonucleotide triphosphates (ddNTPs) as substrates can take a "snapshot" of proofreading products after a single nucleotide extension via MALDI-TOF MS (Figure 1).
Likewise, this method was also developed for a DNA repair assay where primers containing 3' penultimate dI lesions are subjected to a pol I repair assay which mimics endo V nicked repair intermediates. While not fully understood, the endo V repair pathway is the only repair system known to employ the pol I proofreading exonuclease activity for lesion excision19,20. Using MALDI-TOF MS, we show a clearly defined repair patch where dI can be excised by pol I when occurring in the last 2 nt of the primer before adding the correct complemented nucleotide.
For the study of proofreading and DNA repair, this method is faster and less laborious than previous methods and provides additional information towards mechanism and function.
1. Primer/template Preparation
2. Proofreading Reactions
Note: The same proofreading reaction condition and protocol applies to a DNA repair of A-I, G-I, C-I, and T-I.
3. Resin Addition to Eliminate Salt Contamination
4. Transfer Reaction Products to a Matrix Chip
5. Setup the Assay Information on the Mass Spectrometry
6. MALDI-TOF MS Operation
7. Data Analysis
Templates and primers:
Using the procedure presented here, equal molar synthetic oligonucleotide templates and primers of relevant sequences obtained from commercial sources were checked for their purity and quality (Figure 3A; note the signals matched the designated mass and the low background) as well as for the relationship between the peak intensity and the analyte mass (
This study described a step-by-step proofreading activity assay analyzed by the chosen commercial instrument (see the Table of Materials) using MALDI-TOF MS. The major advantages include that the primer and template are label free and easy to perform, allowing for greater flexibility in designing experiments. A stream-lime complete processing of 30 proofreading tests would take 4 h, including 3 h for manually performing the proofreading reactions and their cleanup, while the MALDI-TOF MS analyses using t...
The authors have nothing to disclose.
We thank the NCFPB Integrated Core Facility for Functional Genomics (Taipei, Taiwan) and the NRPB Pharmacogenomics Lab (Taipei, Taiwan) for their technical support. This work was supported by research grants from the Taiwan Health Foundation (L-I.L.) and the Ministry of Science and Technology, Taipei, Taiwan, ROC [MOST 105-2320-B-002-047] for Woei-horng Fang, [MOST 105-2628-B-002 -051-MY3] for Kang-Yi Su, and [MOST-105-2320-B-002-051-MY3] for Liang-In Lin.
Name | Company | Catalog Number | Comments |
Oligonucleotides | Mission Biotech (Taiwan) | ||
phosphorothioate modified oligonucleotides | Integrated DNA Technologies (Taiwan) | ||
DNA polymerase I, Large (Klenow) Fragment | New England Biolabs, MA | M0210L | |
Klenow fragment (3'→5' exo-) | New England Biolabs, MA | M0212L | |
NEBuffer 2.1 (10X) | New England Biolabs, MA | B7202S | |
2', 3' ddATP | Trilink Biotechnologies, CA | N4001 | |
2', 3' ddGTP | Trilink Biotechnologies, CA | N4002 | |
2', 3' ddTTP | Trilink Biotechnologies, CA | N4004 | |
2', 3' ddCTP | Trilink Biotechnologies, CA | N4005 | |
dATP, dGTP, dCTP, dTTP set | Clubio, Taiwan | CB-R0315 | |
SpectroCHIP array | Agena Bioscience, CA | #01509 | |
MassARRAY | Agena Bioscience, CA | ||
Typer 4.0 software | Agena Bioscience, CA | #10145 | |
Clean Resin Tool Kit | Agena Bioscience, CA | #08040 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved