JoVE Logo
Faculty Resource Center

Sign In





Representative Results





Developmental Biology

An In Vivo Method to Study Mouse Blood-Testis Barrier Integrity

Published: December 2nd, 2018



1State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 2Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China
* These authors contributed equally

Here, we present a protocol to assess the blood-testis barrier integrity by injecting inulin-FITC into testes. This is an efficient in vivo method to study blood-testis barrier integrity that can be compromised by genetic and environmental elements.

Spermatogenesis is the development of spermatogonia into mature spermatozoa in the seminiferous tubules of the testis. This process is supported by Sertoli cell junctions at the blood-testis barrier (BTB), which is the tightest tissue barrier in the mammalian body and segregates the seminiferous epithelium into two compartments, a basal and an adluminal. The BTB creates a unique microenvironment for germ cells in meiosis I/II and for the development of postmeiotic spermatids into spermatozoa via spermiogenesis. Here, we describe a reliable assay to monitor BTB integrity of mouse testis in vivo. An intact BTB blocks the diffusion of FITC-conjugated inulin from the basal to the apical compartment of the seminiferous tubules. This technique is suitable for studying gene candidates, viruses, or environmental toxicants that may affect BTB function or integrity, with an easy procedure and a minimal requirement of surgical skills compared to alternative methods.

Mammalian spermatogenesis is considered a highly structured process that encompasses spermatogonial self-renewal and differentiation through spermatocytes into haploid spermatozoa via mitosis, meiosis, and spermiogenesis, during which dramatic biochemical and morphological changes occur. Developing germ cells are progressively transported from the base of the seminiferous tubule toward the lumen. This process is regulated by cell-cell contacts between germ cells and Sertoli cells1,2. Adjacent Sertoli cells form the BTB that is located near the base of the seminiferous tubule. The BTB physically divides the epi....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All performed animal experiments have been approved by the Nanjing Medical University committee. Male C57BL/6 mice were kept under controlled photoperiod conditions and were supplied with food and water.

1. Preparations

  1. Microinjection capillaries
    1. Use microinjection capillaries with an outer diameter, inner dimeter, and length of 1.0 mm, 0.8 mm, and 10.0 cm, respectively.
    2. Pull glass capillaries with a capillary puller (Fig.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The experimental set-up for performing the BTB integrity assay is shown in Figure 1. Pull and sharpen microinjection capillaries with a capillary puller and micropipette beveler, respectively (Figure 1A and 1C). The thermostatic heater and equipment for microinjection are illustrated in Figure 1B and 1D.

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Spermatogenesis takes place in the seminiferous epithelium and is a highly ordered and dynamic process that is governed by germ cells and somatic cells (e.g., Sertoli cells)13. The BTB structure, which is constructed by Sertoli cells, divides the seminiferous epithelium into a basal and an apical compartment. The development of meiotic and haploid germ cells occurs in the apical compartment which forms an immunological barrier14.

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by the National Key R&D Program of China (2016YFA0500902), the National Natural Science Foundation of China (31471228, 31771653), the Jiangsu Science Foundation for Distinguished Young Scholars (BK20150047), the Natural Science Foundation of Jiangsu Province (BK20140897, 14KJA180005) and the Innovative and Entrepreneurial Program of Jiangsu Province to K.Z.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Capillary puller  SUTTER INSTRUMENT (USA) P-97
10x PBS Hyclone (USA) SH30258.01 dilution to 1× in ddH2O
4’,6-diamidino-2-phenylindole (DAPI) Sigma (USA) F6057
Adhesion microscope slides CITOGLAS (China) 80312-3161
Cadmium chloride Sigma (USA) 655198-5G
Confocal microscope Zeiss (Germany) LSM700
Dust-free paper Kimberly-Clark (USA) 34120
Inulin-FITC Sigma (USA) F3272
Microinjection capillaries Zhengtianyi (China) BJ-40 1.0 mm × 0.8 mm  × 100 mm
Micropipette beveler NARISHIGE (JAPAN) EG-400
Paraformaldehyde Sigma (USA) P6148
Pentobarbital sodium Merck (Germany) P11011
Shaver  Yashen (China)
Stereo microscope Nikon (JAPAN) SMZ1000
Sucrose  Sangon Biotech (China) A610498
Surgical instruments Stronger (China) scissors, forceps, needle holder
Syringe KDL (China) 20163150518 0.45 mm × 0.16 mm RW LB
thermostatic heater KELL (Nanjing, China) KEL-2010
10x TBS, pH 7.6
0.2 M Tris Sangon Biotech (China) A600194
1.37 M Nacl Sangon Biotech (China) A610476

  1. Mruk, D. D., Cheng, C. Y. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocrine Reviews. 25 (5), 747-806 (2004).
  2. Wen, Q., et al. Transport of germ cells across the seminiferous epithelium during spermatogenesis-the involvement of both actin- and microtubule-based cytoskeletons. Tissue Barriers. 4 (4), e1265042 (2016).
  3. Wang, C. Q., Cheng, C. Y. A seamless trespass: germ cell migration across the seminiferous epithelium during spermatogenesis. Journal of Cell Biology. 178 (4), 549-556 (2007).
  4. Fijak, M., Meinhardt, A. The testis in immune privilege. Immunological Reviews. 213, 66-81 (2006).
  5. O'Bryan, M. K., Hedger, M. P. Inflammatory Networks in the Control of Spermatogenesis Chronic Inflammation in an Immunologically Privileged Tissue?. Molecular Mechanisms In Spermatogenesis. 636, 92-114 (2008).
  6. Li, N., Wang, T., Han, D. Structural cellular and molecular aspects of immune privilege in the testis. Frontiers in Immunology. 3, 152 (2012).
  7. Mruk, D. D., Cheng, C. Y. The Mammalian Blood-Testis Barrier: Its Biology and Regulation. Endocrine Review. 36 (5), 564-591 (2015).
  8. Govero, J., et al. Zika virus infection damages the testes in mice. Nature. 540 (7633), 438-442 (2016).
  9. Jenabian, M. A., et al. Immune tolerance properties of the testicular tissue as a viral sanctuary site in ART-treated HIV-infected adults. AIDS. 30 (18), 2777-2786 (2016).
  10. Holembowski, L., et al. TAp73 is essential for germ cell adhesion and maturation in testis. Journal Of Cell Biology. 204 (7), 1173-1190 (2014).
  11. Legendre, A., et al. An engineered 3D blood-testis barrier model for the assessment of reproductive toxicity potential. Biomaterials. 31 (16), 4492-4505 (2010).
  12. Setchell, B. P., Waites, G. M. Changes in the permeability of the testicular capillaries and of the 'blood-testis barrier' after injection of cadmium chloride in the rat. Journal of Endocrinology. 47 (1), 81-86 (1970).
  13. Griswold, M. D. The central role of Sertoli cells in spermatogenesis. Seminars in Cell & Developmental Biology. 9 (4), 411-416 (1998).
  14. Cheng, C. Y., Mruk, D. D. The blood-testis barrier and its implications for male contraception. Pharmacological Reviews. 64 (1), 16-64 (2012).
  15. Mruk, D. D., Cheng, C. Y. An in vitro system to study Sertoli cell blood-testis barrier dynamics. Methods Molecular Biology. 763, 237-252 (2011).
  16. Orth, J. M. Proliferation of Sertoli cells in fetal and postnatal rats: a quantitative autoradiographic study. Anatomical Record. 203 (4), 485-492 (1982).
  17. Lee, N. P. Y., Mruk, D., Lee, W. M., Cheng, C. Y. Is the cadherin/catenin complex a functional unit of cell-cell actin-based adherens junctions in the rat testis?. Biology of Reproduction. 68 (2), 489-508 (2003).
  18. Bai, S., et al. A Germline-Specific Role for the mTORC2 Component Rictor in Maintaining Spermatogonial Differentiation and Intercellular Adhesion in Mouse Testis. Molecular Human Reproduction. 24 (5), 244-259 (2018).
  19. Korhonen, H. M., et al. DICER Regulates the Formation and Maintenance of Cell-Cell Junctions in the Mouse Seminiferous Epithelium. Biology of Reproduction. 93 (6), 139 (2015).
  20. Loir, M. Trout Sertoli cells and germ cells in primary culture: I. Morphological and ultrastructural study. Gamete Research. 24 (2), 151-169 (1989).
  21. Chen, H., et al. Monitoring the Integrity of the Blood-Testis Barrier (BTB): An In Vivo Assay. Methods in Molecular Biology. 1748, 245-252 (2018).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved