Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Agrobacterium-mediated transformation using a floral-dip method can be successfully employed to create stable transgenic lines of the extremophyte model Schrenkiella parvula. We present a protocol modified from that for Arabidopsis thaliana, considering different growth habits and physiological characteristics of the extremophyte.

Abstract

Schrenkiella parvula is an extremophyte adapted to various abiotic stresses, including multiple ion toxicity stresses. Despite high-quality genomic resources available to study how plants adapt to environmental stresses, its value as a functional genomics model and tool has been limited by the lack of a feasible transformation system. In this protocol, we report how to generate stable transgenic S. parvula lines using an Agrobacterium-mediated floral-dip method. We modified the transformation protocol used for A. thaliana to account for unique traits of S. parvula, such as an indeterminate flowering habit and a high epicuticular wax content on leaves. Briefly, S. parvula seeds were stratified at 4 °C for five days before planting. Plants were grown at a photoperiod of a 14 h light and 10 h dark and a 130 µmol m-2s-1 light intensity, at 22 °C to 24 °C. Eight to nine week-old plants with multiple inflorescences were selected for transformation. These inflorescences were dipped in an infiltration solution of Agrobacterium tumefaciens GV3101 carrying the pMP90RK plasmid. We performed two rounds of flower dipping with an interval of three to four weeks to increase the transformation efficiency. The T1 seeds were collected and dried for four weeks in a container with desiccants before germination to screen for candidate transformed lines. Resistance to BASTA was used to screen T1 plants. We sprayed the BASTA solution three times with an interval of three days starting at two week-old plants to reduce false positives. A BASTA drop test was performed on surviving individual plants to identify true positive transformants. The transformation efficiency was 0.033%, yielding 3–4 transgenic plants per 10,000 T1 seeds propagated.

Introduction

In this protocol, we describe the growth and establishment of stable transgenic lines for the extremophyte model Schrenkiella parvula. The availability of an efficient transformation system is a hallmark of any versatile genetic model. Plants that thrive in extreme environments, referred to as extremophytes, provide a critical resource for understanding plant adaptations to environmental stresses. Schrenkiella parvula (formerly Thellungiella parvula and Eutrema parvulum) is one such extremophyte model, with expanding genomic resources1,2,3<....

Protocol

1. Plant Growth

  1. Seed sterilization (optional)
    1. Prepare 50% bleach in double-distilled water (ddH2O) with 1 or 2 drops of a non-ionic detergent (see Table of Materials) in a 50 mL tube. Invert the tube several times to mix the solution.
      NOTE: It is preferable to conduct seed sterilization in a laminar flow cabinet with a UV sterilized surface for 15 min.
    2. Add the bleach solution to ~100–200 S. parvula seed.......

Representative Results

We developed a transformation protocol that enables harvesting of T0 seeds within 150 days, using a floral-dip method modified from that for A. thaliana. Figure 1 shows a summary of the timeline and S. parvula plants that represent the optimal stage for executing the transformation through floral-dip. We selected S. parvula plants with 70 –80 flowers in multiple inflorescences at 60–80 days after germination a.......

Discussion

The physiological state of the plant significantly influences the efficiency of transformation25. The use of healthy and vigorous plants for transformation is a key requirement for successful transformation in S. parvula. Water or light stressed plants will have fewer flowers compared to the healthy plants ideal for transformation (Figure 1, center panel). S. parvula can grow at a light intensity less than 130 µmol m-2 s-1,.......

Acknowledgements

This work was supported by a National Science Foundation award MCB 1616827.

....

Materials

NameCompanyCatalog NumberComments
AgarVWR International, Radnor, PA90000-762Bacto Agar Soldifying Agent, BD Diagnostics
B5 vitaminsSigma-Aldrich, St. Louis, MOG1019Gamborg’s Vitamin Solution
DesiccantW A Hammond Drierite, Xenia, OH22005Indicating DRIERITE 6 mesh
Destination vector for plant transformationTAIRVector:6531113857pKGWFS7
Electroporation cuvetteUSA Scientific9104-5050Electroporation cuvette, round cap, 0.2 cm gap
ElectroporatorBIO-RAD Laboratories, Hercules, CA1652100MicroPulser Electroporator
Fertilizer beadsOsmocote Garden, Marysville, OHN/AOsmocote Smart-Release Plant Food Flower & Vegetable
Gel extraction kitiNtRON Biotechnology, Boston, MA17289MEGAquick-spin Total fragment DNA purification kit
GentamicinSigma-Aldrich, St. Louis, MOG1914-5GGentamicin sulfate
Glufosinate-ammonium (11.3%) herbicide (BASTA)Bayer environmental science, Montvale, NJN/AFINALE herbicide
KanamycinVWR International, Radnor, PA200004-444Kanamycin monosulfate
MESBioworld, Dublin, OH41320024-2MES, Free Acid
MS saltMP Biomedicals, Santa Anna, CA092621822Hoagland's modified basal salt mixture
N6-benzylaminopurine (BA) Sigma-Aldrich, St. Louis, MOB32746-Benzylaminopurine solution
NaClSigma-AlrichS7653Sodium chloride
Non-ionic detergentSigma-Aldrich, St. Louis, MO9005-64-5TWEEN 20 
Plasmid isolation kitZymo Research, Irvine, CAD4036Zyppy Plasmid Kits
Recombinase enzyme mix kitLife Technology11791-020Gateway LR Clonase II Enzyme mix
RifampicinSigma-Aldrich, St. Louis, MOR3501-1GRifampicin, powder, >= 97% (HPLC)
Shaking incubatorThermoFisher Scientific, Waltham, MASHKE4450MaxQ 4450 Benchtop Orbital Shakers
Soil mixSun GroSUN239223328CFLPSun Gro Metro-Mix 360 Grower Mix
SpectinomycinVWR International, Radnor, PAIC15206705
Sterile 50ml conical tubesUSA Scientific, Ocala, FL1500-181150 ml conical screw cap tubes, copolymer, racks, sterile
SucroseVWR International, Radnor, PA57-50-1Sucrose, ACS
Surfactant solutionLehle seeds, Round Rock, TXVIS-02Silwet L-77
Topoisomerase-based cloning kitLife Technologies, Carlsbad, CAK240020pENTR/D-TOPO Cloning Kit, with One Shot TOP10 Chemically Competent E. coli
TryptoneVWR International, Radnor, PA90000-282BD Bacto Tryptone, BD Biosciences
Yeast ExtractVWR International, Radnor, PA90000-722 BD Bacto Yeast Extract, BD Biosciences

References

  1. Dassanayake, M., et al. The genome of the extremophile crucifer Thellungiella parvula. Nature Genetics. 43 (9), 913-918 (2011).
  2. Oh, D. -. H., Dassanayake, M., Bohnert, H. J., Cheeseman, J. M. Life at the extreme: lessons from the genome.

Explore More Articles

Schrenkiella ParvulaArabidopsis ThalianaPlant TransformationAgrobacterium mediated TransformationFloral DipExtremophytePlant AdaptationComparative GenomicsGene RegulationPlant GrowthSeed StratificationPlant SelectionInflorescenceSilique RemovalAgrobacterium Infiltration Solution

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved