Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

[18F]-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography is useful for studying glucose metabolism related to brain function. Here, we present a protocol for an [18F]FDG tracer set-up and semiquantitative assessment of the region-of-interest analysis for targeted brain areas associated with clinical manifestations in patients with severe traumatic brain injury.

Abstract

Patients with severe traumatic brain injury (sTBI) have difficulty knowing whether they are accurately expressing their thoughts and emotions because of disorders of consciousness, disrupted higher brain function, and verbal disturbances. As a consequence of an insufficient ability to communicate, objective evaluations are needed from family members, medical staff, and caregivers. One such evaluation is the assessment of functioning brain areas. Recently, multimodal brain imaging has been used to explore the function of damaged brain areas. [18F]-fluorodeoxyglucose positron emission tomography-computed tomography ([18F]FDG-PET/CT) is a successful tool for examining brain function. However, the assessment of brain glucose metabolism based on [18F]FDG-PET/CT is not standardized and depends on several varying parameters, as well as the patient's condition. Here, we describe a series of semiquantitative assessment protocols for a region-of-interest (ROI) image analysis using self-produced [18F]FDG tracers in patients with sTBI. The protocol focuses on screening the participants, preparing the [18F]FDG tracer in the hot lab, scheduling the acquisition of [18F]FDG-PET/CT brain images, and measuring glucose metabolism using the ROI analysis from a targeted brain area.

Introduction

Patients with sTBI are presented with unforeseeable neurological difficulties over the course of rehabilitation that include motor deficits, sensory deficits, and psychiatric instability1. Although clinical assessment is generally performed verbally, patients with sTBI such as unresponsive wakefulness syndrome or minimally conscious state have particular difficulty in knowing whether they are accurately expressing their thoughts and emotions because of disorders of consciousness, disrupted higher brain function, and verbal disturbances2,3. Family members, medical staff, and caregivers a....

Protocol

This study was performed in compliance with the institutional review board (approval No. 07-01) and adhered to the tenets of the Declaration of Helsinki. Informed consent for medical record and brain image use was obtained from the patients’ legal representatives. The study was conducted after approval by the institutional ethics committee (2017-14). This protocol was made following the guidelines of the Japanese Society of Nuclear Medicine and European Association of Nuclear Medicine as a reference

Representative Results

A 63-year-old man who had been run over by a car while cycling was brought to the emergency room via ambulance. The examination revealed a Glasgow Coma Scale score of 7 (eye opening = 1, best verbal response = 2, best motor response = 4), anisocoria (right: 2 mm, and left: 3 mm), and a negative corneal response17. A CT of the head showed subarachnoid and intracranial hemorrhage and a skull fracture of the left zygoma, temporal bones, and parietal bones. Th.......

Discussion

This protocol provides the means to conduct a series of brain-glucose metabolic assessments with [18F]FDG-PET/CT using self-produced [18F]FDG tracer at a single institution.

The production of [18F]FDG tracer follows the procedure described in the FDG synthesizer operator manual; however, caution is necessary regarding three points. First, the bombardment time and energy (step 2.5) should be adjusted according to the number of patients. Second, attention should .......

Acknowledgements

The authors wish to thank Dr. Uchino in Sousen hospital for all procedures. The authors also thank Adam Phillips from the Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

....

Materials

NameCompanyCatalog NumberComments
20ml syringeTerumoSS-20ESZ
10ml syringeTerumoSS-10ESZ
1ml syringeTerumoSS-01T
Protective plugTopML-KS
Three-way cock L type 180°TerumoTS-TL2K
Extension tubeTopX1-50
Indwelling needle 22G or 24GTerumoSR-OT2225C
Tegaderm transparent dressing3M1624W
Hepaflash 10U/ml 10mlTerumoPF-10HF10UA
Auto dispensing and injection systemUniversal Giken Co., Ltd.UG-01
Fluid for auto dispensing and injection systemUniversal Giken Co., Ltd.UG-01-001
Millex-GS Syringe Filter UnitMilliporeSLGSV255F
Air needleTerumoXX-MFA2038
Check valveHakko23310100
Saline 500mlHIKARI pharmaceutical Co., Ltd.18610155-3
Yukiban 25x7mmNitto3252
Elascot No.3Alcare44903221
Presnet No.3 27x20mmAlcare11674
Steri Cotto a 4x4cmKawamoto023-720220-00
StatstripXp3Nova Biomedical11-110
Statstrip Glucose stripsNova Biomedical11-106
JMSsheetJMSJN-SW3X
Injection padNichibanNo.30-N
SteptyNichibanNo.80
Advantage WorkstationGE HealthcareVolume Share 7. version 4.7
Discovery MI PET/CTGE Healthcare
EV InsitePSP
GE TRACERlab MXFDG synthesizer reagent kitABXK-105TM
TRACERlab MXFDG cassetteGE HealthcareP5150ME
Extension tubeUniversal Giken Co., LtdAT511-ST-001
TSK sterilized injection needle 18x100TochigiseikoAT511-ST-004
TSK sterilized injection needle 18x60TochigiseikoAT511-ST-002
TSK sterilized injection needle 21x65TochigiseikoAT511-ST-003
Seal sterile vial -N 5mlMita Rika Kogyo Co., Ltd.SSVN5CBFA
k222 TLC plateUniversal Giken Co., Ltd.AT511-01-005
Anion-cation test paperToyo Roshi Kaisha7030010
Endospecy ES-24S setSeikagaku corporation20170
Sterile evacuated vialGi phama10214
5ml syringeTerumoSS-05SZ
Extension tubeTopX-120
Finefilter FForte grow medical Co.Ltd.F162
Millex FGMerckSLFG I25 LS
Vented Millex GSMerckSLGS V25 5F
Injection needle 18x38TerumoNN-1838R
Injection needle 21x38TerumoNN-2138R
Water-18OTaiyo Nippon SansoF03-0027
Distilled waterOtsuka phrmaceutical
Hydrogen gas G1Hosi Iryou Sanki
Helium gas G1Hosi Iryou Sanki
Nitrogen G1Hosi Iryou Sanki
TRACERlabMXFDGGE Healthcare
Sep-Pak Light Accell Plus QMAWATERS
Sep-Pak Plus tC18WATERS
Sep-Pak Plus Alumina NWATERS
HPLC with 3.9 X 300 mm columnsWATERS
US-2000Universal Giken CO. Ltd.
Kryptofix222Merck
EG Reader SV-12Seikagaku Corporation
UG-01Universal Giken Co., Ltd.
syngo.viaSiemens Healthineers
Advantage Workstation Volume Share 7, version 4.7GE Healthcare
Q clearGE Healthcare
CRC-15PET dose calibratorCAPINTEC, INC.

References

  1. Godbolt, A. K., et al. Disorders of consciousness after severe traumatic brain injury: a Swedish-Icelandic study of incidence, outcomes and implications for optimizing care pathways. Journal of Rehabilitation Medicine. 45 (8), 741-748 (2013).
  2. Klingshirn, H., et al.

Explore More Articles

18F FDG TracerSemi quantitative AssessmentSevere Brain InjuryUnresponsive Wakefulness SyndromeMinimal Conscious StateCerebral Traumatic Brain InjuryAutomated FDG SynthesisOxygen 16Oxygen 18Cyclotron IrradiationMannose TriflateAcetonitrileFluorine 18

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved