JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Semi-quantitative Assessment Using [18F]FDG Tracer in Patients with Severe Brain Injury

Published: November 9th, 2018



1Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 2Division of PET imaging, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3Tokyo Nuclear Services Co. Ltd., 4Department of Neurological Surgery, Graduate School of Medicine, Chiba University

[18F]-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography is useful for studying glucose metabolism related to brain function. Here, we present a protocol for an [18F]FDG tracer set-up and semiquantitative assessment of the region-of-interest analysis for targeted brain areas associated with clinical manifestations in patients with severe traumatic brain injury.

Patients with severe traumatic brain injury (sTBI) have difficulty knowing whether they are accurately expressing their thoughts and emotions because of disorders of consciousness, disrupted higher brain function, and verbal disturbances. As a consequence of an insufficient ability to communicate, objective evaluations are needed from family members, medical staff, and caregivers. One such evaluation is the assessment of functioning brain areas. Recently, multimodal brain imaging has been used to explore the function of damaged brain areas. [18F]-fluorodeoxyglucose positron emission tomography-computed tomography ([18F]FDG-PET/CT) is a successful tool for examining brain function. However, the assessment of brain glucose metabolism based on [18F]FDG-PET/CT is not standardized and depends on several varying parameters, as well as the patient's condition. Here, we describe a series of semiquantitative assessment protocols for a region-of-interest (ROI) image analysis using self-produced [18F]FDG tracers in patients with sTBI. The protocol focuses on screening the participants, preparing the [18F]FDG tracer in the hot lab, scheduling the acquisition of [18F]FDG-PET/CT brain images, and measuring glucose metabolism using the ROI analysis from a targeted brain area.

Patients with sTBI are presented with unforeseeable neurological difficulties over the course of rehabilitation that include motor deficits, sensory deficits, and psychiatric instability1. Although clinical assessment is generally performed verbally, patients with sTBI such as unresponsive wakefulness syndrome or minimally conscious state have particular difficulty in knowing whether they are accurately expressing their thoughts and emotions because of disorders of consciousness, disrupted higher brain function, and verbal disturbances2,3. Family members, medical staff, and caregivers a....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This study was performed in compliance with the institutional review board (approval No. 07-01) and adhered to the tenets of the Declaration of Helsinki. Informed consent for medical record and brain image use was obtained from the patients’ legal representatives. The study was conducted after approval by the institutional ethics committee (2017-14). This protocol was made following the guidelines of the Japanese Society of Nuclear Medicine and European Association of Nuclear Medicine as a reference

Log in or to access full content. Learn more about your institution’s access to JoVE content here

A 63-year-old man who had been run over by a car while cycling was brought to the emergency room via ambulance. The examination revealed a Glasgow Coma Scale score of 7 (eye opening = 1, best verbal response = 2, best motor response = 4), anisocoria (right: 2 mm, and left: 3 mm), and a negative corneal response17. A CT of the head showed subarachnoid and intracranial hemorrhage and a skull fracture of the left zygoma, temporal bones, and parietal bones. Th.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This protocol provides the means to conduct a series of brain-glucose metabolic assessments with [18F]FDG-PET/CT using self-produced [18F]FDG tracer at a single institution.

The production of [18F]FDG tracer follows the procedure described in the FDG synthesizer operator manual; however, caution is necessary regarding three points. First, the bombardment time and energy (step 2.5) should be adjusted according to the number of patients. Second, attention should .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors wish to thank Dr. Uchino in Sousen hospital for all procedures. The authors also thank Adam Phillips from the Edanz Group ( for editing a draft of this manuscript.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
20ml syringe Terumo SS-20ESZ
10ml syringe Terumo SS-10ESZ
1ml syringe Terumo SS-01T
Protective plug Top ML-KS
Three-way cock L type 180° Terumo TS-TL2K
Extension tube Top X1-50
Indwelling needle 22G or 24G Terumo SR-OT2225C
Tegaderm transparent dressing 3M 1624W
Hepaflash 10U/ml 10ml Terumo PF-10HF10UA
Auto dispensing and injection system Universal Giken Co., Ltd. UG-01
Fluid for auto dispensing and injection system Universal Giken Co., Ltd. UG-01-001
Millex-GS Syringe Filter Unit Millipore SLGSV255F
Air needle Terumo XX-MFA2038
Check valve Hakko 23310100
Saline 500ml HIKARI pharmaceutical Co., Ltd. 18610155-3
Yukiban 25x7mm Nitto 3252
Elascot No.3 Alcare 44903221
Presnet No.3 27x20mm Alcare 11674
Steri Cotto a 4x4cm Kawamoto 023-720220-00
StatstripXp3 Nova Biomedical 11-110
Statstrip Glucose strips Nova Biomedical 11-106
Injection pad Nichiban No.30-N
Stepty Nichiban No.80
Advantage Workstation GE Healthcare Volume Share 7. version 4.7
Discovery MI PET/CT GE Healthcare
EV Insite PSP
GE TRACERlab MXFDG synthesizer reagent kit ABX K-105TM
TRACERlab MXFDG cassette GE Healthcare P5150ME
Extension tube Universal Giken Co., Ltd AT511-ST-001
TSK sterilized injection needle 18x100 Tochigiseiko AT511-ST-004
TSK sterilized injection needle 18x60 Tochigiseiko AT511-ST-002
TSK sterilized injection needle 21x65 Tochigiseiko AT511-ST-003
Seal sterile vial -N 5ml Mita Rika Kogyo Co., Ltd. SSVN5CBFA
k222 TLC plate Universal Giken Co., Ltd. AT511-01-005
Anion-cation test paper Toyo Roshi Kaisha 7030010
Endospecy ES-24S set Seikagaku corporation 20170
Sterile evacuated vial Gi phama 10214
5ml syringe Terumo SS-05SZ
Extension tube Top X-120
Finefilter F Forte grow medical Co.Ltd. F162
Millex FG Merck SLFG I25 LS
Vented Millex GS Merck SLGS V25 5F
Injection needle 18x38 Terumo NN-1838R
Injection needle 21x38 Terumo NN-2138R
Water-18O Taiyo Nippon Sanso F03-0027
Distilled water Otsuka phrmaceutical
Hydrogen gas G1 Hosi Iryou Sanki
Helium gas G1 Hosi Iryou Sanki
Nitrogen G1 Hosi Iryou Sanki
TRACERlabMXFDG GE Healthcare
Sep-Pak Light Accell Plus QMA WATERS
Sep-Pak Plus tC18 WATERS
Sep-Pak Plus Alumina N WATERS
HPLC with 3.9 X 300 mm columns WATERS
US-2000 Universal Giken CO. Ltd.
Kryptofix222 Merck
EG Reader SV-12 Seikagaku Corporation
UG-01 Universal Giken Co., Ltd.
syngo.via Siemens Healthineers
Advantage Workstation Volume Share 7, version 4.7 GE Healthcare
Q clear GE Healthcare
CRC-15PET dose calibrator CAPINTEC, INC.

  1. Godbolt, A. K., et al. Disorders of consciousness after severe traumatic brain injury: a Swedish-Icelandic study of incidence, outcomes and implications for optimizing care pathways. Journal of Rehabilitation Medicine. 45 (8), 741-748 (2013).
  2. Klingshirn, H., et al. Quality of evidence of rehabilitation interventions in long-term care for people with severe disorders of consciousness after brain injury: A systematic review. Journal of Rehabilitation Medicine. 47 (7), 577-585 (2015).
  3. Fischer, D. B., Truog, R. D. What is a reflex? A guide for understanding disorders of consciousness. Neurology. 85 (6), 543-548 (2015).
  4. Klingshirn, H., et al. RECAPDOC - a questionnaire for the documentation of rehabilitation care utilization in individuals with disorders of consciousness in long-term care in Germany: development and pretesting. BMC Health Services Research. 18 (1), 329 (2018).
  5. Stéfan, A., Mathé, J. F. SOFMER group. What are the disruptive symptoms of behavioral disorders after traumatic brain injury? A systematic review leading to recommendations for good practices. Annals of Physical and Rehabilitation. 59, 5-17 (2016).
  6. Liu, S., et al. Multimodal neuroimaging computing: a review of the applications in neuropsychiatric disorders. Brain Informatics. 2 (3), 167-180 (2015).
  7. Wong, K. P., et al. A semi-automated workflow solution for multimodal neuroimaging: application to patients with traumatic brain injury. Brain Informatics. 3 (1), 1-15 (2016).
  8. Chennu, S., et al. Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness. Brain. 140 (8), 2120-2132 (2017).
  9. Di Perri, C., et al. Neural correlates of consciousnes s in patients who have emerged from a minimally conscious state: a cross-sectional multimodal imaging study. The Lancet Neurology. 15 (8), 830-842 (2016).
  10. Erecińska, M., Silver, I. A. ATP and brain function. Journal of Cerebral Blood Flow & Metabolism. 9 (1), 2-19 (1989).
  11. Lundgaard, I., et al. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nature Communications. 6, 6807 (2015).
  12. Byrnes, K. R., et al. FDG-PET imaging in mild traumatic brain injury: a critical review. Frontiers in Neuroenergetics. 5, 13 (2014).
  13. Mortensen, K. N., et al. Impact of Global Mean Normalization on Regional. Glucose Metabolism in the Human Brain. Neural Plasticity. , 6120925 (2018).
  14. Wagatsuma, K., et al. Comparison between new-generation SiPM-based and conventional PMT-based TOF-PET/CT. Physica Medica. 42, 203-210 (2017).
  15. Fukukita, H., et al. Japanese guideline for the oncology FDG-PET/CT data acquisition protocol: synopsis of Version 2.0. Annals of Nuclear Medicine. 28 (7), 693-705 (2014).
  16. Varrone, A., et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. European Journal of Nuclear Medicine and Molecular Imaging. 36 (12), 2103-2110 (2009).
  17. Teasdale, G., Jennett, B. Assessment of coma and impaired consciousness. A practical scale. The Lancet. 2 (7872), 81-84 (1974).
  18. Valadka, A. B., Moore, E. J., Feliciano, D. V., Moore, E. E. Injury to the cranium. Trauma. , 377-399 (2000).
  19. Carney, N., et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery. 80 (1), 6-15 (2017).
  20. Giacino, J. T., Kalmar, K., Whyte, J. The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Archives of Physical Medicine and Rehabilitation. 85 (12), 2020-2029 (2004).
  21. Schnakers, C., et al. The Nociception Coma Scale: a new tool to assess nociception in disorders of consciousness. Pain. 148 (2), 215-219 (2010).
  22. Shiel, A., et al. The Wessex Head Injury Matrix (WHIM) main scale: a preliminary report on a scale to assess and monitor patient recovery after severe head injury. Clinical Rehabilitation. 14 (4), 408-416 (2000).
  23. GE Healthcare. . TRACERlabMXFDG operator manual, Version 1. , (2003).
  24. Yamaki, T., et al. Association between uncooperativeness and the glucose metabolism of patients with chronic behavioral disorders after severe traumatic brain injury: a cross-sectional retrospective study. BioPsychoSocial Medicine. 12, 6 (2018).
  25. Schwaiger, M., Wester, H. J. How many PET tracers do we need?. Journal of Nuclear Medicine. 52, (2011).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved