A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we present a protocol to infect primary human dermal fibroblast with MCPyV. The protocol includes isolation of dermal fibroblasts, preparation of MCPyV virions, virus infection, immunofluorescence staining, and fluorescence in situ hybridization. This protocol can be extended for characterizing MCPyV-host interactions and discovering other cell types infectable by MCPyV.
Merkel cell polyomavirus (MCPyV) infection can lead to Merkel cell carcinoma (MCC), a highly aggressive form of skin cancer. Mechanistic studies to fully investigate MCPyV molecular biology and oncogenic mechanisms have been hampered by a lack of adequate cell culture models. Here, we describe a set of protocols for performing and detecting MCPyV infection of primary human skin cells. The protocols describe the isolation of human dermal fibroblasts, preparation of recombinant MCPyV virions, and detection of virus infection by both immunofluorescent (IF) staining and in situ DNA-hybridization chain reaction (HCR), which is a highly sensitive fluorescence in situ hybridization (FISH) approach. The protocols herein can be adapted by interested researchers to identify other cell types or cell lines that support MCPyV infection. The described FISH approach could also be adapted for detecting low levels of viral DNAs present in the infected human skin.
Merkel cell polyomavirus (MCPyV) is a small, double-stranded DNA virus that has been associated with a rare but aggressive skin cancer, Merkel cell carcinoma (MCC)1,2. The mortality rate of MCC, around 33%, exceeds that of melanoma3,4. MCPyV has a circular genome of ~5 kb1,5 bisected by a non-coding regulatory region (NCRR) into early and late coding regions1. The NCRR contains the viral origin of replication (Ori) and bidirectional promoters for viral transcription
Human neonatal foreskins were obtained from Penn Skin Disease Research Center. Adult human fibroblasts were obtained from discarded normal skin after surgery. All the protocols were approved by the University of Pennsylvania Institutional Review Board.
1. Isolation of human dermal fibroblasts
The protocol described in this manuscript allowed isolation of a nearly homogenous population of HDFs (Figure 1). As demonstrated by immunofluorescent staining, almost 100% of the human dermal cells isolated using the conditions described in this protocol were positively stained for dermal fibroblast markers, vimentin, and collagen I24, but negative for human foreskin keratinocyte marker K14 (Figure 1).
The methods described above , including isolation of dermal fibroblasts from human skin tissue, preparation of recombinant MCPyV virions, infection of cultured cells, immunofluorescent staining, and a sensitive FISH method adapted from HCR technology, which should enable researchers to analyze MCPyV infection27. One of the most critical steps to achieving MCPyV infection in vitro is the production of high-titer virion preparations. Using the protocol for preparation of recombinant MCPyV virions de.......
The authors would like to thank Dr. Meenhard Herlyn (Wistar Institute) and Dr. M. Celeste Simon (University of Pennsylvania) for providing reagents and technical support. We also thank the members of our laboratories for helpful discussion. This work was supported by the National Institutes of Health (NIH) grants (R01CA187718, R01CA148768 and R01CA142723), the NCI Cancer Center Support Grant (NCI P30 CA016520), and the Penn CFAR award (P30 AI 045008).
....Name | Company | Catalog Number | Comments |
Fetal calf serum | HyClone | SH30071.03 | |
MEM Non-Essential Amino Acids Solution, 100X | Thermo Fisher Scientific | 11140050 | |
GLUTAMAX I, 100X | Thermo Fisher Scientific | 35050061 | L-Glutamine |
DPBS, no calcium, no magnesium | Thermo Fisher Scientific | 14190136 | |
0.05% Trypsin-EDTA | Thermo Fisher Scientific | 25300-054 | |
DMEM/F12 medium | Thermo Fisher Scientific | 11330-032 | |
Recombinant Human EGF Protein, CF | R&D systems | 236-EG-200 | Store at -80 degree celsius |
CHIR99021 | Cayman Chemical | 13122 | Store at -80 degree celsius |
CHIR99021 | Sigma | SML1046 | Store at -80 degree celsius |
Collagenase type IV | Thermo Fisher Scientific | 17104019 | |
Dispase II | Roche | 4942078001 | |
Antibiotic-Antimycotic | Thermo Fisher Scientific | 15240-062 | Protect from light |
DMEM medium | Thermo Fisher Scientific | 11965084 | |
Alexa Fluor 594 goat anti-mouse IgG | Thermo Fisher Scientific | A11032 | Protect from light |
Alexa Fluor 488 goat anti-rabbit IgG | Thermo Fisher Scientific | A11034 | Protect from light |
OptiPrep Density Gradient Medium | Sigma | D1556 | Protect from light |
Paraformaldehyde | Sigma | P6148 | |
anti-MCPyV LT (CM2B4) | Santa Cruz | sc-136172 | Lot # B2717 |
MCV VP1 rabbit | Rabbit polyclonal serum #10965 | https://home.ccr.cancer.gov/lco/BuckLabAntibodies.htm | |
Hygromycin | Roche | 10843555001 | |
Basic Fibroblast Growth Factors (bFGF), Human Recombinant | Corning | 354060 | Store at -80 degree celsius |
Benzonase Nuclease | Sigma | E8263 | |
Plasmid-Safe ATP-Dependent DNase | EPICENTRE | E3101K | |
Probe hybridization buffer | Molecular technologies | ||
Probe wash buffer | Molecular technologies | ||
Amplification buffer | Molecular technologies | ||
Alexa 594-labeled hairpins | Molecular technologies | B4 | Protect from light |
Triton X-100 | Sigma | X100 | |
Quant-iT PicoGreen dsDNA Reagent | Thermo Fisher Scientific | P7581 | |
BamHI-HF | NEB | R3136 | |
Buffer PB | Qiagen | 19066 | |
blue miniprep spin column | Qiagen | 27104 | |
50mL Conical Centrifuge Tubes | Corning | 352070 | |
T4 ligase | NEB | M0202T | |
MagicMark XP | Thermo Fisher Scientific | LC5602 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved