Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

A protocol for the fabrication of a reflective cholesteric liquid crystalline display device containing a redox-responsive chiral dopant allowing quick and low-voltage operation is presented.

Abstract

We demonstrate a method for fabricating a prototype reflective display device that contains cholesteric liquid crystal (LC) as an active component. The cholesteric LC is composed of a nematic LC 4'-pentyloxy-4-cyanobiphenyl (5OCB), redox-responsive chiral dopant (FcD), and a supporting electrolyte 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMIm-OTf). The most important component is FcD. This molecule changes its helical twisting power (HTP) value in response to redox reactions. Therefore, in situ electrochemical redox reactions in the LC mixture allow for the device to change its reflection color in response to electrical stimuli. The LC mixture was introduced, by a capillary action, into a sandwich-type ITO glass cell comprising two glass slides with patterned indium tin oxide (ITO) electrodes, one of which was coated with poly(3,4-ethylenedioxythiophene)-co-poly(ethylene glycol) doped with perchlorate (PEDOT+). Upon application of +1.5 V, the reflection color of the device changed from blue (467 nm) to green (485 nm) in 0.4 s. Subsequent application of 0 V made the device recover the original blue color in 2.7 s. This device is characterized by its fastest electrical response and lowest operating voltage among any previously reported cholesteric LC device. This device could pave the way for the development of next generation reflective displays with low energy consumption rates.

Introduction

Cholesteric liquid crystals (LCs) are known to exhibit bright reflection colors due to their internal helical molecular arrangements1,2,3,4. The reflection wavelength λ is determined by the helical pitch P and the average refractive index n of the LC (λ = nP). Such LCs can be generated by doping chiral compounds (chiral dopants) to nematic LCs and its helical pitch is defined by the equation P = 1/βMC, where βM is the helical twisting pow....

Protocol

1. Preparation of the cholesteric LC mixture

  1. Add 84.6 mg of 5OCB and 5.922 mg of FcD19 (3.1 mol% to 5OCB) into a clean 10 mL glass vial.
  2. Add 12.9 mg of EMIm-OTf and 10 mL of dichloromethane (CH2Cl2) into a new clean 10 mL glass vial and mix well. Transfer 2.1 mL of the EMIm-OTf solution into the 5OCB- and FcD-containing glass vial. Gently shake the vial to let all th.......

Representative Results

Photographs, transmittance spectra, and time dependent transmittance change profiles at 510 nm are collected for the LC device containing FcD-doped (3.1 mol%) cholesteric LC in the presence of EMIm-OTf (3.0 mol%) during the voltage application cycles between 0 and +1.5 V at 37 °C.

The LC mixture containing FcD (3.1 mo.......

Discussion

Upon application of +1.5 V to the top ITO electrode (Figure 1C), FcD undergoes an oxidation reaction to generate FcD+. As the helical twisting power of FcD+ (101 µm-1, Figure 1B) is lower than that .......

Acknowledgements

We thank Dr. Keisuke Tajima from RIKEN Center for Emergent Matter Science for valuable discussions. A part of this work was conducted at the Advanced Characterization Nanotechnology Platform of the University of Tokyo, supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. This work was financially supported by a JSPS Grant-in-Aid for Scientific Research (S) (18H05260) on "Innovative Functional Materials based on Multi-Scale Interfacial Molecular Science" for T.A. Y.I. is grateful for a JSPS Grant-in-Aid for Challenging Exploratory Research (16K14062). S.T. thanks the JSPS Young Scientist Fellowship.

....

Materials

NameCompanyCatalog NumberComments
1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate, 98%TCIE0494
4-Cyano-4'-pentyloxybiphenyl, 98%TCIC1551
Diamond tipped glass cutterAS ONE6-539-05
Dichloromethane, 99.5%KANTO CHEMICAL10158-2BHPLC grade
Differential Scanning CalorimeterMETTLER TOLEDODSC 1
Digital microscope KEYENCEVHX-5000
Extran MA01Merck107555
Fully ITO-coated glass plateCostum order, Resistance: ~30Ω
Glass beadsThermo Fisher Scientific90055 ± 0.3 μm in diameter
Hot stageINSTECmK1000
ITO-patterned glass plateCostum order, Resistance: ~30Ω
Oil rotary vacuum pumpSATO VACTSW-150Pressure: ~5 Pa
Optical adhesiveNolandNOA81
Poly(3,4-ethylenedioxythiophene), bis-poly(ethyleneglycol), lauryl terminatedSigma Aldrich6873160.7 wt% (dispersion in nitromethane)
PotentiostatTOHO TECHNICAL RESEARCHPS-08
Rubbing machineEHCMRJ-100S
SpectrophotometerJASCOV-670 UV/VIS/NIR
Spin coaterMIKASA1H-D7
Ultrapure waterMerck Milli-Q Integral 3
Ultrasonic bathAS ONEASU-2Power: 40 W
Ultrasonic solderingKURODA TECHNOSUNBONDER USM-IV
UV lampAS ONESLUV-4Power: 4 W

References

  1. Chandrasekhar, S. . Liquid Crystals. , (1992).
  2. Blinov, L. M., Chigrinov, V. G. . Electrooptic Effects in Liquid Crystal Materials. , (1994).
  3. Pieraccini, S., Masiero, S., Ferrarini, A., Spada, G. P.

Explore More Articles

Cholesteric Liquid CrystalsColor ModulationFcD Chiral DopantElectrochemical DeviceITO GlassPEDOTReflective Displays

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved