JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Chemistry

An Electrochemical Cholesteric Liquid Crystalline Device for Quick and Low-Voltage Color Modulation

Published: February 27th, 2019

DOI:

10.3791/59244

1Department of Chemistry and Biotechnology, The University of Tokyo, 2Department of Chemistry, Tsinghua University, 3RIKEN Center for Emergent Matter Science

* These authors contributed equally

Abstract

We demonstrate a method for fabricating a prototype reflective display device that contains cholesteric liquid crystal (LC) as an active component. The cholesteric LC is composed of a nematic LC 4'-pentyloxy-4-cyanobiphenyl (5OCB), redox-responsive chiral dopant (FcD), and a supporting electrolyte 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMIm-OTf). The most important component is FcD. This molecule changes its helical twisting power (HTP) value in response to redox reactions. Therefore, in situ electrochemical redox reactions in the LC mixture allow for the device to change its reflection color in response to electrical stimuli. The LC mixture was introduced, by a capillary action, into a sandwich-type ITO glass cell comprising two glass slides with patterned indium tin oxide (ITO) electrodes, one of which was coated with poly(3,4-ethylenedioxythiophene)-co-poly(ethylene glycol) doped with perchlorate (PEDOT+). Upon application of +1.5 V, the reflection color of the device changed from blue (467 nm) to green (485 nm) in 0.4 s. Subsequent application of 0 V made the device recover the original blue color in 2.7 s. This device is characterized by its fastest electrical response and lowest operating voltage among any previously reported cholesteric LC device. This device could pave the way for the development of next generation reflective displays with low energy consumption rates.

Explore More Videos

Keywords Cholesteric Liquid Crystals

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved