サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

ここでは、CRISPR酵素と関連する単一ガイドRNA(sgRNA)の両方を発現するプラスミドの効率的な生成のための合理化された方法を説明するプロトコルを提示する。このsgRNA/CRISPRベクターと二本鎖破断修復を調べる二重ルシファーゼレポーターベクターを用いた哺乳動物細胞の共トランスフェクションにより、ノックアウト効率の評価が可能です。

要約

非常に効率的ですが、CRISPR酵素によるゲノム部位の改変には、標的部位に特有のsgRNAの生成が事前に必要です。本研究は、DNAシーケンシング前にPCRによる正のコロニーの効率的な検出を可能にする戦略を用いて、効率的なsgRNAベクターの構築につながる重要なステップを説明する。CRISPRシステムを用いた効率的なゲノム編集には高効率なsgRNAが必要なため、時間と労力を節約するために候補sgRNAターゲットの事前選択が必要です。二重ルシファーゼレポーターシステムは、一本鎖アニールによる二本鎖破断修復を調べることにより、ノックアウト効率を評価するために開発されました。ここでは、このレポーターシステムを使用して、特定の遺伝子編集のための候補sgRNAベクターから好ましいxCas9/sgRNA標的をピックアップする。概説されたプロトコルは、好ましいsgRNA/CRISPR酵素ベクターを10日間で提供する(適切に設計されたオリゴヌクレオチドから始まる)。

概要

CRISPR sgRNAは、ゲノム標的配列1,2と相補的である20-塩基配列(プロトスパサー)を含む。高効率ではあるが、CRISPR/Casシステムが所定のゲノム部位を改変する能力は、標的部位に特有の効率的なsgRNAを担うベクターの生成を必要とする2。本論文では、そのsgRNAベクターの生成における重要なステップについて述べている。

CRISPR/Casシステムを用いたゲノム編集を成功させるためには、高効率sgRNAを使用することが重要な前提条件3、4、5である。ゲノム編集で用いられる操作用ヌクレアーゼは、異なる標的遺伝子1において多様な効率を示すため、時間と労力を節約するために候補sgRNA標的の事前選択が必要である6、7、8、9。二重ルシファーゼレポーターシステムは、一本鎖アニール3、10を介して二本鎖破断修復を調べることによってノックアウト効率を評価するために開発されました。ここでは、このレポーターシステムを使用して、特定の遺伝子編集用に設計された異なる候補sgRNAベクターから好ましいCRISPR sgRNA標的を選択します。ここで述べられているプロトコルは、CRISPR sgRNAを生成し、評価するために、ここ数年、当社のグループと共同研究所で実施されています。

次のプロトコルは、ネットワークソフトウェアを介して適切なsgRNAを設計する方法を要約します。適切なsgRNAが選択されたら、必要なオリゴヌクレオチドを得るための異なるステップと、ペア化オリゴヌクレオチドをpX330-xCas9発現ベクターに挿入するアプローチについて説明する。また、これらの配列のライゲーションに基づくsgRNA発現およびデュアルルシファーゼレポーターベクターを前消化発現ベクターに組み立てる方法を提示する(ステップ2-10、 図1A)。最後に、各sgRNAのDNA切断効率を解析する方法について説明する(ステップ11〜12)。

プロトコル

1. sgRNAオリゴヌクレオチド設計

  1. Cas-Designer オンライン ツール (http://www.rgenome.net/cas-designer/) などのオンライン ツールを使用して sgRNA を設計します。PAM シーケンスは、使用されている Cas9 に基づいて重要です。xCas9 の場合、関連する PAM シーケンスは NG であり、以前に参照されていた Cas-Designer オンライン ツールは、xCas9 関連の sgRNA を生成できます。
    1. オンターゲット予測とオフターゲット予測 (http://www.broadinstitute.org/rnai/public/analysis-tools/sgrna-design)11に対するアルゴリズムを包含する sgRNA 設計ツールを使用します。スコアが 0.2 以上の場合が望ましい。
  2. 最適なスクリーニングのために最大3つの遺伝子編集ターゲットを選択します(例えば、T1、T2およびT3は、ヒツジDKK2エキソン1遺伝子を標的とする[表1])のために設計されました)。

2. オリゴヌクレオチド修飾

  1. sgRNAオリゴヌクレオチドを修飾するには、3'-NGのプロトスペーサ隣接モチーフ(PAM)を削除し、プロトスペーサ配列(例えば、T1の開始配列:TGCCTGCTCCTACTGGCCGC[20 nt])を維持する。
  2. オリゴの5'末端にペンタヌクレオチドCACCGを加えます。
    注:pX330-xCas9骨格に結紮すると、この配列は、SgRNA転写を動機づけるU6プロモーターの3'末端を含みます。配列「CACC」は、オリゴがBbsI消化pX330-xCas9プラスミドのオーバーハングと一致していることを保証します。ベース「G」は、RNAポリメラーゼIIIプロモーターの前提条件であり、sgRNA転写の効果的な起動を保証します(例えば、T1のプロトスパサーに5'-CACCGアレイを追加し、T1-F:CACCGCCTCTGCTCCTACTGGCCGC[25 nt]を達成します)。21 nt gRNAの切断効率は、20 nt gRNA1,12,13,14のそれとは大きく異なる。通常、短いプロトスペーサを生成して5'-Gで20 ntを使用することをお勧めします。
  3. プロトスペースの逆補(rc)を作成します。
    注: たとえば、T1 プロトスペーサの rc は GCGGCCAGTAGGAGCAGGCA (20 nt) です。
  4. rc プロトスペース・シーケンスの 5'終わりに AAAC を追加します。rc プロトスペースの 3'終わりに C を追加します。
    注: 「AAAC」配列は、オリゴヌクレオチドがBbsI消化pX330-xCas9プラスミドにクローニングするのに適していることを保証します。3'末端の追加の「C」は、上述のsgRNA転写のための「G」を始める「G」でアニーリングするために不可欠である(例えば、AAACGCGGGCGGAGAGAGCAGGCAC[25 nt]は、T1 rcプロトスペンサーの最終的なオリゴヌクレオチド配列である)。
  5. オリゴヌクレオチドを注文します。

3. オリゴヌクレオチドアニール

  1. 凍結乾燥したオリゴヌクレオチドを、二重蒸留水中の10μMの最終濃度(ddH2 O)に希釈した。
  2. 余分なバッファーを追加せずに、1:1の比率(例えば、各20 μL)をメインタンにした薄い壁PCRチューブに前方および逆オリゴヌクレオチドを混ぜます。
  3. 95°Cで5分間インキュベートし、温度を72°Cまで10分間下げます。PCRマシンからサンプルを取り出し、RTに置くだけで構成される室温(RT)での冷却期間に従ってください。
    注:結紮を容易にするためにオリゴヌクレオチド混合物をリン酸化する必要はありません。

4. sgRNA/CRISPR ベクター消化

  1. 選択したpX330-xCas9ベクターの1μgを 、BbsI(プラスミド1μg当たり10単位の酵素)を37°Cで2時間消化する(図2)。pX330-xCas9 sgRNA発現ベクターの全容量50μLで、5μLの10x消化バッファーと蒸留水を含み、最終的な体積を達成します。
  2. 10V/cm以下の2%アガロースゲルからバンド抽出して消化ベクターを精製し、その後市販のゲル抽出キットを使用してシリカカラムを使用して精製します。

5. アニールsgRNAオリゴヌクレオチドの発現ベクターへの結紮

  1. アニールsgRNAオリゴヌクレオチド(ステップ4から5μLの混合物)をBbsI消化pX330-xCas9ベクター(精製、100 ng)と混合します。
  2. 1 μL のリガーゼと 10x リガーゼバッファーの 1 μL を加えます。
  3. 適切な体積で蒸留水を10μLまで加えます。
  4. 4°Cで一晩インキュベートする。

6. 有能な細胞変換

  1. 80°Cの貯蔵から 大腸菌 DH5αのコンピテントセルを取り出し、氷の上で解凍します。
  2. 5 μLのライゲーションミックスを有能な大腸菌DH5αの50 μLに加え、氷上で30分間保持します。
  3. 90 sの42°Cで混合物を熱ショック。
  4. 氷の上に2分間置き、下さいます。
  5. LB培地500μLのロータリーシェーカーで37°Cで1時間培養を回収します。
  6. アンピシリン耐性LBアガロースプレート上の培養物のプレート200μLを、37°Cで一晩インキュベートする。

7. PCRによる正しい組換えプラスミドの同定

  1. LBプレートから5〜10個の細菌コロニーを選択し、それぞれを使用して、60mg/mLアンピシリンで1mLのLB培地を含む1.5mLチューブを接種します。
  2. 2-3時間回転式シェーカーにチューブをインキュベートします。
  3. sgRNAオリゴヌクレオチドに特異的なプライマー対を用いて正しい組換えプラスミドの検出を行う[例えば、T1 sgRNA発現ベクター構築のためのフォワードプライマー(T1-F):CACCGTGCCTGCGCTCCTACTGGGCGC、リバースプライマー(BbsI-R):AAGTCCCTATGgCGTGTTAC、287bpon産生する。
    1. PCR混合物を準備する(表2)。
    2. 以下の PCR サイクリング条件を使用してください: 95 °C 前変性のために 5 分;変性のための30のsのための95°Cの30の周期、アニーリングのための30 sのための60°C、延長のための30のsのための72°Cの30周期。30サイクルが完了した後、72°Cで5分間加熱して最終延長工程を行います。
    3. PCR製品を10V/cm以下の2%アガロースゲルで実行します。正しいサイズのバンド[例えば、287 bp]は正であると考えられる。

8. sgRNA発現プラスミドの配列を検証する

  1. 逆プライマー BbsI-Rを用いてサンガーシーケンシング15によるPCR陽性コロニーの配列を確認する(ステップ7.3を参照)。このプライマーは、sgRNAオリゴインサートの下流の部位でアニールする。プロトスペースサーTGCCTGCTCCGCGCGCGCGGGGGGGGとxCas9を含むsgRNA配列を発現するpX330-xCas9-T1を構築した。
  2. 正のコロニーを配列するために、前方プライマーT1-Fを使用する。前方の1つは、シーケンシングプライマーに続く30〜50bp断片が正確に読み出せることができなかったため、sgRNAオリゴの挿入部位を取り囲む部位に対して完全な配列情報を与えることができなかった。

9. 二重ルシファーゼレポーターベクターの構築

  1. sgRNA標的を含む300-500bp DNA断片を合成し、二重消化を介して二重ルシファーゼレポーターベクターにサブクローニングする[例えば、サブクローン440 bp羊DKK2 exon1断片をpSSA-Dual plasmid16、17AscIおよびSalIとの二重消化を使用して、pSSA-Dual-DK]得られる。
  2. sgRNA標的を含む300〜500bpのDNA断片を合成する。DNA断片の配列は、NCBIウェブサイト(https://www.ncbi.nlm.nih.gov/)または関連する参考文献から得ることができるゲノム配列の一部でなければならないことに注意してください。
  3. pSSA-Dual16、17(またはホタルルシファーゼとレニラルシファラーゼをそれぞれ発現する2つのベクター)などの適切な二重ルシファーゼレポーターベクターを選択し、このベクターと上記のDNA断片をAscIおよびSalIなどの2つのエンドヌクレアーゼで消化します。
  4. 最後に、これら2つの断片をT4 DNAリガーゼでリゲートし、結果としてpSSA-デュアルターゲットにします。二重消化および結紮の詳細は、それぞれ 表3 および 表4に表示される。DNAの組み換えを避ける目的で、レポーターベクターは、より低い回転速度(通常は200rpm以下)で培養することが推奨される安定した細菌株(Top10など)で増幅されるべきであることを言及する価値があります。

10. 細胞トランスフェクション

  1. 上記のベクターに対する内毒素フリープラスミドを抽出する。適切な器具を用いて、プラスミドの純度と濃度を評価します。これらのプラスミドには、500 ng/μL以上の最終濃度と吸光度260/280 nm(A260/A280)での純度比1.7~1.9が推奨されています。
  2. ピエク18 などの適切な細胞株をプラスミドを等しい比率でトランスフェクトします(例えば、pX330-xCas9-T1:pSSA-Dual-DKK2=1:1,0.5 μgプラスミドを24ウェルプレートを使用する場合)。pX330-xCas9 などの空のベクトルを負のコントロールとして使用します。
    1. トランスフェクションの1日前に、2x105 細胞/ウェルの密度で24ウェル培養プレート内のプレート細胞。細胞は60-80%の合流を達成するときトランスフェクションの準備が整います。
    2. トランスフェクションタイムポイントの前に、できるだけ上清を取り除き、各井戸に0.5mLの新鮮な培地を静かに加えます。
    3. DMEM培地中の希薄トランスフェクション試薬は1:25の比率で、よく混ぜます。
    4. DMEM培地25μLに0.5μgのDNAを希釈してDNAのマスターミックスを調製し、P3000試薬を1μL添加します。
    5. 希釈トランスフェクション試薬の各チューブに希釈DNAを加える(1:1比)。
    6. 室温で10~15分間インキュベートします。
    7. 50μLのDNA-脂質複合体を細胞に加えます。
    8. 細胞を37°Cで24時間培養する。 次に、ステップ11のようにトランスフェクトされた細胞を解析する。

11. デュアルルシファーゼの検出

  1. 1x受動リシスバッファー (PLB) の十分な量を、4体積の蒸留水に 1 ボリュームの 5x PLB を加えて、よく混ぜます。
  2. 24ウェル培養プレートで培養した細胞の受動リシス。
    1. 培養細胞から増殖培地を取り出し、培養容器の表面を洗浄するのに十分な量のリン酸緩衝生理食塩水(PBS)を穏やかに塗布する。容器を短く旋回させて、剥離した細胞と残留成長培地を除去します。PLB試薬を塗布する前に、すすい溶液を完全に除去してください。
    2. 1x PLBの100 μLを各培養ウェルに分配し、細胞単層を完全に覆います。培養プレートを20分間放置します。
    3. さらに取り扱いまたは保管するために、ライセートをチューブまたはバイアルに移します。
  3. ルシファーゼアッセイ用試薬(LAR)を、提供されたルシファーゼアッセイ基板を供給されたルシファーゼアッセイバッファーの10mLに再懸濁して調製する。
  4. 望ましい数のデュアルルシファーゼレポーターアッセイ(アッセイあたり100 μL試薬)を実行するのに十分な量を用意します。ガラスまたはシリコンポリプロピレンチューブに50ボリュームのストップバッファに50xストップ基板の1ボリュームを追加します。
  5. デュアルルシファーゼレポーター(DLR)アッセイ
    1. 2秒の予読遅延を提供し、その後10秒の測定期間を提供するようにルミノメーターをプログラムします。
    2. 100 μLのルシメラーゼアッセイ試薬を適切な数のルミノメーターチューブに入れ、所望の数のDLRアッセイを完成させます。
    3. LARを含むルミノメーターチューブに細胞ライセートの20 μLまで慎重に移します。2回または3回ピペットで混合する。チューブをルミノメーターに入れ、読み取りを開始します。
    4. サンプルチューブをルミノメーターから取り出し、100 μLの停止試薬と渦を短時間加えて混合します。ルミノメーターのサンプルを交換し、読み取りを開始します。
    5. ホタルルシファーゼ活性、すなわち画面に表示される比率の逆数に正規化されたレニラルシファーゼ活性を記録する。
    6. 反応管を廃棄し、次のアッセイに進みます。

結果

このプロトコルで概説されている方法は、sgRNAおよびxCas9発現ベクターの構築と、比較的高い遺伝子標的化効率を有するsgRNAオリゴの最適化スクリーニングのためのものである。ここでは、ヒツジ DKK2 エキソン1に3sgRNA標的の代表例を示す。SgRNAおよびxCas9発現ベクターは、ベクター骨格(図2)を前消化し、続いてアニーリングオリゴ対を介して一連の短い二本鎖DNA断?...

ディスカッション

ここで説明したsgRNAベクタークローニング手順は、オリゴヌクレオチドの順序付けおよびベクターシーケンシングに由来するコストの大部分を伴うsgRNAの効率的な生産を促進する。概略的な方法はユーザーがCRISPR/Cas9で使用するためのsgRNAを生成できるように設計されているが、プロトコルはCas9オルソローグまたはCpf1のような他のRNA誘導エンドヌクレアーゼで使用するために容易に適応するこ...

開示事項

著者らは、競合する財政的利益はないと宣言している。

謝辞

このプロジェクトは、中国国立自然科学財団(31301936)山東省のファーストクラスの草原科学規律プログラムによって資金提供されました。 31572383)、公益に関する農業科学研究特別基金(201403071)、牛乳製品の品質と安全性に関する国家リスク評価の主要な特別プロジェクト(GJFP201800804)、青島人民生活科学技術プロジェクト(19-6-1-68-nsh、 14-2-3-45-nsh, 13-1-3-88-nsh).

資料

NameCompanyCatalog NumberComments
A new generation of full touch screen gradient PCR instrumentLongGeneA200Target gene amplification
AscI restriction enzymesNew England BiolabsR0558VCutting target vectors
BbsI restriction enzymeNew England BiolabsR0539SCutting target vectors
Clean workbenchAIRTECHSW-CJ-2FD/VS-1300L-UA partial purification device in the form of a vertical laminar flow, which creates a local high clean air environment
DH5α Competent CellsTaKaRaK613Plasmid vector transformation
Dual-Luciferas Reporter Assay SystemPromegaE1910Dual-luciferas reporter assay
Electric thermostatic water bathSanfa Scientific InstrumentsDK-S24Heating reagent by constant temperature in water bath
ElectrophoresisBeijing Liuyi Biotechnology Co., Ltd.DYY-6CControl voltage, current, etc.
Eppendorf Reference 2Eppendorf China Ltd.Reference 2Accurately draw and transfer traces of liquid
Gel imaging analyzerBeijing Liuyi Biotechnology Co., Ltd.WD-9413BFor the analysis of electrophoresis gel images
GloMax 20/20 LuminometerPromegaE5311Detect dual luciferase activity
High speed refrigerated centrifugeBMHsigma 3K15Nucleic acid extraction and purification
Intelligent biochemical incubatorSanfa Scientific InstrumentsSHP-160Provide a suitable temperature environment for the enzyme digestion experiment
LB Broth AgarSangon BiotechA507003-0250For the cultivation of E.coli
Lipofectamine 3000 Transfection Reagent KitThermo FisherL3000015DNA Transfection
SalI restriction enzymesNew England BiolabsR3138VCutting target vectors
SanPrep Column DNA Gel Extraction KitSangon BiotechB518131-0050Recycling DNA fragments
SanPrep Column Plasmid Mini-Preps KitSangon BiotechB518191-0100Extraction of plasmid DNA
T4 DNA LigaseNew England BiolabsM0202VLink DNA fragment
TaKaRa MiniBEST DNA Fragment Purification Kit Ver.4.0TaKaRa9761DNA purification
Vertical pressure steam sterilizerJIBIMEDLS-50LDHigh temperature and autoclave to kill bacteria, fungi and other microorganisms in laboratory equipment
Water bath thermostatChangzhou Guoyu Instrument Manufacturing Co., Ltd.SHZ-82Let the bacteria keep shaking, which is good for contact with air.

参考文献

  1. Zhang, H., et al. A surrogate reporter system for multiplexable evaluation of CRISPR/Cas9 in targeted mutagenesis. Scientific Reports. 8 (1), 1042 (2018).
  2. Nageshwaran, S., et al. CRISPR Guide RNA Cloning for Mammalian Systems. Journal of Visualized Experiments. (140), (2018).
  3. Dang, Y., et al. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biology. 16, 280 (2015).
  4. Doench, J. G., et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology. 34 (2), 184-191 (2016).
  5. Moreno-Mateos, M. A., et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nature Methods. 12 (10), 982-988 (2015).
  6. Joung, J., et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nature Protocols. 12 (4), 828-863 (2017).
  7. Yang, L., Yang, J. L., Byrne, S., Pan, J., Church, G. M. CRISPR/Cas9-Directed Genome Editing of Cultured Cells. Current Protocols in Molecular Biology. 107, 1-17 (2014).
  8. Yang, L., Mali, P., Kim-Kiselak, C., Church, G. CRISPR-Cas-mediated targeted genome editing in human cells. Methods in Molecular Biology. 1114, 245-267 (2014).
  9. Vidigal, J. A., Ventura, A. Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries. Nature Communications. 6, 8083 (2015).
  10. Mazon, G., Mimitou, E. P., Symington, L. S. SnapShot: Homologous recombination in DNA double-strand break repair. Cell. 142 (4), 646 (2010).
  11. Doench, J. G., et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nature Biotechnology. 32 (12), 1262-1267 (2014).
  12. Lee, J. K., et al. Directed evolution of CRISPR-Cas9 to increase its specificity. Nature Communications. 9 (1), 3048 (2018).
  13. Sung, Y. H., et al. Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Research. 24 (1), 125-131 (2014).
  14. Ran, F. A., et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 154 (6), 1380-1389 (2013).
  15. Sanger, F., Nicklen, S., Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America. 74 (12), 5463-5467 (1977).
  16. Ruan, J., et al. Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Scientific Reports. 5, 14253 (2015).
  17. Li, K., et al. An plasmid with double fluorescent groups and its application as standard substance. China patent. , (2012).
  18. Li, H., et al. Characterization of the porcine p65 subunit of NF-kappaB and its association with virus antibody levels. Molecular Immunology. 48 (6-7), 914-923 (2011).
  19. Li, H., et al. A pair of sgRNAs targeting porcine RELA gene. China patent. , (2015).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

166 CRISPR RNA sgRNA PCR

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved