Here we present a protocol to quantify the chemotactic activity of blood monocytes in mouse models, to assess the effects of nutritional, pharmacological and genetic interventions on blood monocyte and to characterize the blood monocytes derived macrophages in mouse models using monocyte-chemoattractant protein-1 (MCP-1)-loaded basement membrane-derived gel plugs.
Tissue homeostasis and repair are critically dependent on the recruitment of monocyte-derived macrophages. Both under- and over-recruitment of monocyte-derived macrophages can impair wound healing. We showed that high fat and high sugar diets promote monocyte priming and dysfunction, converting healthy blood monocytes into a hyper chemotactic phenotype poised to differentiate into macrophages with dysregulated activation profiles and impaired phenotypic plasticity. The over-recruitment of monocyte-derived macrophages and recruitment of macrophages with dysregulated activation profiles is believed to be a major contributor to the development of chronic inflammatory diseases associated with metabolic disorders, including atherosclerosis and obesity. The goal of this protocol is to quantify the chemotactic activity of blood monocytes as a biomarker for monocyte priming and dysfunction and to characterize the macrophage phenotype blood monocytes are poised to differentiate into in these mouse models. Using single cell Western blot analysis, we show that after 24 h 33%of cells recruited into MCP-1-loaded basement membrane-derived gel plugs injected into mice are monocytes and macrophages; 58% after day 3. However, on day 5, monocyte and macrophage numbers were significantly decreased. Finally, we show that this assays also allows for the isolation of live macrophages from the surgically retrieved basement membrane-derived gel plugs, which can then be subjected to subsequent characterization by single cell Western blot analysis.
The recruitment of monocyte-derived macrophages is essential for the development of chronic inflammatory diseases associated with metabolic disorders, including atherosclerosis and obesity1,2,3,4. The number of monocyte-derived macrophages at sites of tissue injury as well as their plasticity are critical for the tissue homeostasis and repair. Both under- and over-recruitment of monocyte-derived macrophages can impair wound healing5. Triggering local tissue inflammation, for example, by the accumulation and oxidation of low-density lipoprotein (LDL) in the aortic wall or inflammatory activation of adipocytes by fatty acids or bacterial lipopolysaccharide leaking through the intestinal barrier, leads to the release of inflammatory mediators, including chemokines such as monocyte chemoattractant protein-1 (MCP-1/CCL2). MCP-1 is a member of the C-C chemokine family and a key chemoattractant responsible for the recruitment of monocyte-derived macrophages to sites of tissue inflammation and injury6,7,8,9,10. Inflammatory activation of vascular endothelium results in the expression of adhesions molecules such as intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1)11,12, allowing circulating monocytes activated by MCP-1 to roll along, firmly adhere to and subsequently transmigrate into the subendothelial space12. Infiltrating monocytes differentiate into macrophages, which can be activated into a proinflammatory phenotype, driving the acute inflammatory process. Driven by the microenvironment, pro-inflammatory macrophages can convert into inflammation-resolving macrophages, which play critical roles in the clearing of inflammatory cells, removing pro-inflammatory signals and completing tissue repair and wound healing12,13.
Chronic metabolic stress primes monocytes for dramatically enhanced responsiveness to chemo-attractants and increased monocyte recruitment, and we showed that primed monocytes give rise to macrophages with dysregulated activation programs and polarization states14,15,16. Monocyte priming promotes atherosclerosis, obesity, and possibly other chronic inflammatory diseases associated with metabolic disorders such as steatohepatitis, kidney diseases and possibly cancer. To assess and quantify monocyte priming in mouse models of human diseases, we developed a new technique to assess the priming state of blood monocytes by measuring the chemotactic activity in vivo14,15,16,17. Our approach involves the injection of basement membrane-derived gel loaded with either a chemoattractant — we commonly use MCP-1 — or vehicle into the left and right flank, respectively, of mice. When carefully injected subcutaneously, the basement membrane-derived gel will form a single plug, from which the chemokines can diffuse and create a defined chemotactic gradient that is not affected by the metabolic or inflammatory state of the surrounding tissue or the recipient mouse.
The basement membrane-derived gel we use for our assay is a solubilized basement membrane preparation extracted from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma, a tumor rich in such extracellular matrix (ECM) proteins. This complex protein mixture contains laminin (60%), collagen IV (30%), the bridging molecule entactin (8%), and a number of growth factors. The basement membrane matrix plug assay was originally developed to investigate angiogenesis in response to various growth factors18,19. However, in order to study monocyte chemotaxis, it is important to use growth factor-depleted basement membrane-derived gel to minimize endothelial cell recruitment and angiogenesis. What makes Matrigel (referred to as basement membrane-derived gel henceforth) unique and particularly useful is that at temperatures below 10 °C it liquefies, allowing for chemokines to be dissolved. At temperatures above 22 °C, the basement membrane-derived solution rapidly undergoes a phase transition and rapidly forms a hydrogel. The plugs can be surgically excised, cleaned and dissolved with a bacillus-derived neutral metalloprotease to yield single cell suspensions, which can be analyzed on a fluorescence-activated cell sorter (FACS), by RNAseq, single-cell RNA and a variety of other omics techniques. Here we describe the use of single-cell Western blot analysis for the characterization of the cell populations recruited into the basement membrane-derived gel plugs one, three or five days after injection.
All the methods described in this protocol have been approved by the Institutional Animal Care and Use Committee at Wake Forest School of Medicine.
1. Preparation of MCP-1-loaded Growth Factor-reduced Basement Membrane-derived Solution
NOTE: This is a sterile procedure.
2. Injection of Basement Membrane-derived Solution
3. Harvest the Basement Membrane-derived Gel Plugs
4. Digest the Basement Membrane-derived Gel Plugs
5. Determining Cell Composition in the Cell Suspension Using Single-cell Western Blot (scWB) Analysis
6. Stripping the scWB Chip
To access the responsiveness of blood monocytes to chemoattractants, we injected vehicle-loaded and MCP-1 loaded basement membrane-derived solution into the left and right flanks of each mouse. Basement membrane-derived gel plugs were removed 1, 3 and 5 days after injections, dissolved and cells recruited into each plug were counted (Figure 1A). By subtracting the cell count in the vehicle-loaded plug (open bars) from the cell count in the MCP-1 loaded plug (closed bars), we obtained the number of cells specifically recruited in response to MCP-1 (Δ Cell Number, Figure 1B). We observed an accelerated MCP-1-specific recruitment and accumulation of cells over the 5-day period, with rates increasing from 31,000 cells/day (Day 1) to 78,000 cells/day (Day 3) and 136,000 cells/day at day 5 (Figure 1B).
To identify the cell types that entered the basement membrane-derived gel plugs, we subjected the cells isolated from each plug to single cell Western blot analysis (scWB), probing for CD45, CD11b and F4/80 expression to identify monocytes (CD11b+F4/80-), macrophages (CD11b+F4/80+ plus CD11b-F4/80+) and remaining non-monocytic leukocytes (CD45+CD11b-F4/80-) (Figure 2). The scWB chips were then probed for vinculin to determine the total cell numbers on each gel and to confirm single cell occupancy of the microwells on the scWB chip. The percentage of monocytes within the MCP-1-loaded basement membrane-derived gel plugs was low at day 1, 20%, peaked at day 3 at 47%, respectively before dropping to 14% at day 5 (Figure 2D). Macrophage numbers within the MCP-1-loaded basement membrane-derived gel plugs increased steadily from 13% at day 1, to 22% on day 3 and 23% on day 5. For MCP-1-loaded plugs, the percentage of monocytes plus macrophages within the isolated cell population was highest at day 3, 31% in vehicle loaded plugs (Figure 3A) and 58% in MCP-1-loaded plugs (Figure 3B), indicating that after 3 days the vast majority of cells recruited by MCP-1-dependent chemotaxis are monocytes and macrophages. Even though the total number of monocytes plus macrophages was higher at day 5 compared to day 3 (Figure 3C and D), due to the significantly higher proportion of monocytes and macrophages in the total cell population (Figure 3A and B), the cell count at day 3 more accurately reflects blood monocyte chemotaxis and recruitment. We, therefore, routinely inject the basement membrane-derived solution three days prior to sacrificing the animals. Whether all macrophages recruited by MCP-1 are monocyte-derived or resident macrophages recruited from neighboring tissues contributed was not determined.
Statistical analysis of the data shown here was conducted with analysis software (e.g., SigmaPlot 14). ANOVA followed by the Fischer LSD test was used to compare mean values between experimental groups. All data are presented as mean ± SD of at least 3 independent experiments. Results were considered statistically significant at the P < 0.05 level.
Figure 1: Quantitation of cells recruited into subcutaneous basement membrane-derived gel plugs. (A) Absolute cell numbers for vehicle-loaded (open bars) and MCP-1-loaded basement membrane-derived gel plugs (closed bars). (B) The number of cells recruited into basement membrane-derived gel plugs by MCP-1 calculated as the difference in cell numbers between MCP-1-loaded and vehicle-loaded plugs. Results are shown as mean ± SD (n=4) Please click here to view a larger version of this figure.
Figure 2: Analysis of cell populations recruited into basement membrane-derived gel plugs by single cell western blot analysis. (A+B) Representative examples are shown for the scWB analysis of a vehicle-loaded (Control) and an MCP-1-leaded plug (MCP-1) isolated from a mouse three days after injection. Chips labeled with antibodies directed against CD45, CD11b and F4/80 followed by fluorescent secondary antibodies as described in the Protocol. The fluorescence intensity of the labeled band for each individual cell is shown as peak area. (C+D) Cell populations were identified as monocytes (CD11b+F4/80-, ), macrophages (CD11b+F4/80+ plus CD11b-F4/80+, ) or as non-monocytic leukocytes (CD45+, ). The remaining cells were labeled "other" (). Results are shown as mean ± SD (n = 3). Please click here to view a larger version of this figure.
Figure 3: Monocyte and macrophage content of basement membrane-derived gel plugs. Quantitative analysis of recruited monocyte and macrophage content in vehicle-loaded and MCP-1-loaded plugs removed at day 1, 3 and 5 post-injection. Values are shown as percent of the total cell population (A + B) and in absolute cell numbers per plug (C + D). Results are shown as mean ± SD (n = 3). Please click here to view a larger version of this figure.
We developed an in vivo chemotaxis assay, making use of the unique physical properties of the basement membrane-derived matrix and the ability to load this unique matrix with chemokines and inject it into mice. The assay allows us to assess in living mice the responsiveness of monocytes (and macrophages) to chemokines, as illustrated here for MCP-1, and the effects of either genetic manipulation or pharmacological, dietary and other environmental exposures on monocyte chemotaxis. Because the chemokine gradient we create in these mice is essentially unaffected by genetic, pharmacological, dietary or environmental exposure, changes in monocyte chemotactic activity actually reflect functional changes in these monocytes and, as we showed previously, also the reprogramming at both the protein and transcriptional level17,20. We reported that metabolic stress in mice increases monocyte responsiveness to chemoattractant and that this hyper-chemotactic activity correlates with increased protein S-glutathionylation, a reversible, redox-dependent posttranslational protein modification, which in most cases leads to loss of enzymatic and protein function21,22, and in some instances even promotes protein degradation16,23.
To successfully execute this procedure and to obtain optimal results with this assay it is critical that accurate volumes of basement membrane-derived solution are injected slowly to create a singular well-formed plug and fibrous capsules should be removed completely to get clean plugs when harvest basement membrane-derived gel plugs, facilitates the dissolution of the entire plug in the dispase solution. Our data show that leaving the plug in the animals for three days optimizes 1) the signal intensity, i.e., the number of monocytes and macrophages recruited into each plug, 2) the selectivity of the signal, i.e., the content of monocytes and macrophages within the total cell populations and 3) the specificity of the signal, i.e. the increase in monocytes and macrophages in response to MCP-1 compared to vehicle. Finally, we demonstrate how state-of-the-art single cell-based approaches in conjunction with the basement membrane-derived gel plug assay can be used to characterize the monocytes recruited into the plugs and thus obtain a snapshot of the potential phenotype of the monocyte-derived macrophages being recruited to sites of injury in any given mouse model in response to specific genetic, pharmacological, dietary or environmental interventions.
There are a number of limitations of the assay to be considered. First, mouse handling, including anesthesia, injection of basement membrane-derived solution, and surgical dissection requires practice to generate single plugs and reproducible data. Second, while most cells recruited into the MCP-1 loaded plugs are monocytes and macrophages, a substantial number are not. This may affect the interpretation of other, non-single-cell based analytical assays performed on this cell population. Finally, since the cell lysis conditions for scWB are mild, migration distances of proteins may differ from standard WB and may not correlate with protein size. Therefore, both cell lysis and run times have to be validated for each new protein to be tested and each primary antibody used.
Open Access fees for this article were provided by ProteinSimple, a Bio-Techne brand.
This project was supported by grants to R.A. from the NIH (AT006885).
Name | Company | Catalog Number | Comments |
10 cm petri dish | griner bio-one | 664 160 | |
10x suspension buffer | proteinsimple | R101 | |
15 cm petri dish | Falcon | 353025 | |
2-Mercaptoethanol | MP BIOMEDICALS | 2194705 | |
5% washing buffer | proteinsimple | R252 | |
Antibody diluent | proteinsimple | 042-203 | |
Bench Top Centrifuge | Beckman Coulter | Microfuge 22R Centrifuge | |
Bovine Serim Albumin | Sigma-Aldrich | A7906-100G | |
Calcein AM | ThermoFisher | C3099 | 1 ml |
CD11b | Novus Biologicals | NB110-89474 | |
CD45 (D4H7K) rabbit mAb | Cell Signal Technologies | 727987S | |
CD68/SR-D1 (FA-11) | Novus Biologicals | NBP2-33337SS | |
Cellometer Vision | Nexcelom | ||
Dispase | BD | 354235 | 100 ml |
Dissecting sissor | |||
Donkey anti-Rabbit IgG secondary antibody [NL557] | Novus Biologicals | NL004 | NL 557 conjugate |
Donkey anti-Rat IgG (H+L) secondary antibody [DyLight 650] | Novus Biologicals | NBP1-75655 | DyLight 650 conjugate |
F4/80 (CI-A3-1) | Novus Biologicals | NB600-404SS | |
Heat Block | effendorf | 22331 | Thermomixer |
Lysis/Running buffer | proteinsimple | R200 | |
Matrigel Matrix (Grwoth Factor Reduced) | BD | 354230 | 10 ml |
Microarray scanner | PerkinElmer | ScanArray Gx | |
Microcentrifuge tube | Fisher Scientific | 05-408-129 | |
Microscope | ThermoFisher | Evos fl | |
Milo | proteinsimple | Single cell western | |
Needle | BD | 305111 | 26G |
Parafilm | |||
Probing chamber | proteinsimple | 035-020 | |
Recombinant mouse CCL2/JE/MCP-1 protein | R&D | 479-JE-050 | |
scWEST chip | proteinsimple | C300 | |
Shaker | Bioexpress | Gene mate orbital shaker | |
Single cell western chip canister | proteinsimple | 035-118 | |
Slide spinner | Labnet | C1303-T | |
Sodium Dodecyl Sulfate (SDS) | Fisher Scientific | BP 166-500 | |
Syringe | BD | 309602 | 1 ml |
Tris-Hydrochloride | Fisher Scientific | BP 153-500 | |
Tweezer | proteinsimple | 035-020 | |
Water bath | ThermoFisher |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved