Sign In

In This Article

  • Abstract
  • Reprints and Permissions

Abstract

Over the past several decades there has been an increased availability of genetically modified mouse models used to mimic human pathologies. However, the ability to study cell movements and differentiation in vivo is still very difficult. Neurocristopathies, or disorders of the neural crest lineage, are particularly challenging to study due to a lack of accessibility of key embryonic stages and the difficulties in separating out the neural crest mesenchyme from adjacent mesodermal mesenchyme. Here, we set out to establish a well-defined, routine protocol for the culture of primary cranial neural crest cells. In our approach we dissect out the mouse neural plate border during the initial neural crest induction stage. The neural plate border region is explanted and cultured. The neural crest cells form in an epithelial sheet surrounding the neural plate border, and by 24 h after explant, begin to delaminate, undergoing an epithelial-mesenchymal transition (EMT) to become fully motile neural crest cells. Due to our two-dimensional culturing approach, the distinct tissue populations (neural plate versus premigratory and migratory neural crest) can be readily distinguished. Using live imaging approaches, we can then identify changes in neural crest induction, EMT and migratory behaviors. The combination of this technique with genetic mutants will be a very powerful approach for understanding normal and pathological neural crest cell biology.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keywords Primary Cranial Neural Crest CellsNeural Crest Cell DelaminationNeural Crest Cell MigrationNeural PlateEmbryonic DissectionNeural Crest DevelopmentMouse EmbryoCell CultureTissue EngineeringDevelopmental Biology

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved