A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we present a protocol for simple isolation of specific groups of live neuronal cells expressing green fluorescent protein from transgenic Caenorhabditis elegans lines. This method enables a variety of ex vivo studies focused on specific neurons and has the capacity to isolate cells for further short-term culturing.
During the aging process, many cells accumulate high levels of damage leading to cellular dysfunction, which underlies many geriatric and pathological conditions. Post-mitotic neurons represent a major cell type affected by aging. Although multiple mammalian models of neuronal aging exist, they are challenging and expensive to establish. The roundworm Caenorhabditis elegans is a powerful model to study neuronal aging, as these animals have short lifespan, an available robust genetic toolbox, and well-cataloged nervous system. The method presented herein allows for seamless isolation of specific cells based on the expression of a transgenic green fluorescent protein (GFP). Transgenic animal lines expressing GFP under distinct, cell type-specific promoters are digested to remove the outer cuticle and gently mechanically disrupted to produce slurry containing various cell types. The cells of interest are then separated from non-target cells through fluorescence-activated cell sorting, or by anti-GFP-coupled magnetic beads. The isolated cells can then be cultured for a limited time or immediately used for cell-specific ex vivo analyses such as transcriptional analysis by real time quantitative PCR. Thus, this protocol allows for rapid and robust analysis of cell-specific responses within different neuronal populations in C. elegans.
Over the past several decades, the metazoan model organism Caenorhabditis elegans has been a tremendous asset in the study of neurons, neuronal circuitry and its role in physiological and behavioral responses, and aging-associated neurodegenerative diseases. A unique feature of C. elegans is that the animals are transparent, allowing for the lineage of all adult somatic cells to be mapped1. C. elegans also harbors manageable quantity of neurons, leading to the morphology and connectivity of the nervous system being well understood2. The invariant cell lineage, short lifespan, and abundance of h....
1. Preparation and collection of aged worms for cell isolation
NOTE: Explained below is the isolation of cholinergic neurons from the transgenic unc-17::GFP strain (OH13083) obtained from the Caenorhabditis Genetics Center (CGC) strain repository at the University of Minnesota. It is imperative to maintain sterile conditions to prevent contamination from fungi or bacteria.
The protocol described here allows for specific isolation of unc-17::GFP-positive cholinergic neurons from the roundworm C. elegans for subsequent ex vivo studies such as cell type-specific gene expression profiling and eventual short-term culturing for patch-clamp electrophysiology measurements.
Figure 1 shows unc-17::GFP-positive cholinergic neurons in their normal setti.......
The roundworm C. elegans is a well-established and powerful model to study neuronal health and disease2. With ample genetic tools to manipulate these animals and manageable quantity of precisely mapped various neuron types, a great deal of data can be collected with a relatively small quantity of material. Here, we outline an optimized method to isolate distinct neurons from whole animals. By disrupting the worm’s outer cuticle proteins, a slurry of various cell types can be isolate.......
We thank Dr. Jennifer Fox and the members of the Khalimonchuk laboratory for insightful comments. We acknowledge the support from the National Institutes of Health (R01 GM108975 to O.K. and T32 GM107001-01A1 to E.M.G.).
....Name | Company | Catalog Number | Comments |
6-well plate | Fisher Scientific | 12-556-004 | |
Agar, Molecular Biology Grade | VWR | A0930 | |
CaCl2 | Sigma | C5670 | |
Chloroform | Sigma | 496189 | |
Contess Automated Cell Counter | Invitrogen | Z359629 | |
DTT | USBiological | D8070 | |
Ethanol | Decon Labs | 2701 | |
FBS | Omega Scientific | FB-02 | |
Fluorodeoxyuridine | Sigma | F0503 | |
HEPES | Sigma | H3375 | |
Isopropanol | VWR | BDH1133 | |
KCl | Amresco | O395 | |
KH2PO4 | USBiological | P5110 | |
Kimwipes | Kimberly-Clark Professionals | 7552 | |
Leibovitz's L-15 Medium | Gibco | 21083027 | |
MgCl2 | Sigma | M8266 | |
MgSO4 | USBiological | M2090 | |
Na2HPO4·7H2O | USBiological | S5199 | |
NaCl | VWR | X190 | |
NaOCl (Bleach) | Clorox | ||
NaOH | Amresco | O583 | |
Penicillin-Streptomicen | Fisher Scientific | 15140122 | |
Peptone Y | USBiological | P3306 | |
Pronase E | Sigma | 7433 | protease mixture from Streptomyces griseus |
SDS | Amresco | O227 | |
SMT1-FLQC fluorescence stereomicroscope | Tritech Research | ||
Sucrose | USBiological | S8010 | |
SuperScript IV One-Step synthesis kit | ThermoFisher | 12594025 | |
TRIzol | Invitrogen | 15596026 | phenol and guanidine isothiocyanate solution |
Trypan Blue Stain | Invitrogen | T10Z82 | |
α-GFP magnetic beads | MBL | D153-11 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved