A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
We describe techniques for differentiation induction of two breast epithelial lines, HC11 and EpH4. While both require fetal calf serum, insulin, and prolactin to produce milk proteins, EpH4 cells can fully differentiate into mammospheres in three-dimensional culture. These complementary models are useful for signal transduction studies of differentiation and neoplasia.
Cadherins play an important role in the regulation of cell differentiation as well as neoplasia. Here we describe the origins and methods of the induction of differentiation of two mouse breast epithelial cell lines, HC11 and EpH4, and their use to study complementary stages of mammary gland development and neoplastic transformation.
The HC11 mouse breast epithelial cell line originated from the mammary gland of a pregnant Balb/c mouse. It differentiates when grown to confluence attached to a plastic Petri dish surface in medium containing fetal calf serum and Hydrocortisone, Insulin and Prolactin (HIP medium). Under these conditions, HC11 cells produce the milk proteins β-casein and whey acidic protein (WAP), similar to lactating mammary epithelial cells, and form rudimentary mammary gland-like structures termed "domes".
The EpH4 cell line was derived from spontaneously immortalized mouse mammary gland epithelial cells isolated from a pregnant Balb/c mouse. Unlike HC11, EpH4 cells can fully differentiate into spheroids (also called mammospheres) when cultured under three-dimensional (3D) growth conditions in HIP medium. Cells are trypsinized, suspended in a 20% matrix consisting of a mixture of extracellular matrix proteins produced by Engelbreth-Holm-Swarm (EHS) mouse sarcoma cells, plated on top of a layer of concentrated matrix coating a plastic Petri dish or multiwell plate, and covered with a layer of 10% matrix-containing HIP medium. Under these conditions, EpH4 cells form hollow spheroids that exhibit apical-basal polarity, a hollow lumen, and produce β-casein and WAP.
Using these techniques, our results demonstrated that the intensity of the cadherin/Rac signal is critical for the differentiation of HC11 cells. While Rac1 is necessary for differentiation and low levels of activated RacV12 increase differentiation, high RacV12 levels block differentiation while inducing neoplasia. In contrast, EpH4 cells represent an earlier stage in mammary epithelial differentiation, which is inhibited by even low levels of RacV12.
In normal tissues or tumors, cells have extensive opportunities for adhesion to their neighbors in a three-dimensional organization, and this is mimicked in culture by high density cell growth. Cell-to-cell adhesion is mediated mainly through cadherin receptors, which define cell and tissue architecture. Interestingly, it was recently demonstrated that cadherins also play a powerful role in signal transduction, especially in survival signaling1. Paradoxically, some of these cell-to-cell adhesion signals emanating from cadherins were recently found to be shared by both differentiation and neoplasia2. Here, we describe methods of induction and assessment of differentiation in two representative types of mouse breast epithelial cell lines, HC11 and EpH4.
The HC11 mouse breast epithelial cell line can provide a useful model for the study of epithelial cell differentiation. HC11 cells are a COMMA-1D-derived cell line, originating from the mammary gland of a mid-pregnant Balb/c mouse3. In contrast to other COMMA-1D derivative clones, the HC11 clone has no requirement for exogenously added extracellular matrix or cocultivation with other cell types for the in vitro induction of the endogenous β-casein gene by lactogenic hormones3. This cell line has been used extensively in differentiation studies because it has retained important characteristics of the normal mammary epithelium: HC11 cells can partially reconstitute the ductal epithelium in a cleared mammary fat pad4. Moreover, they can differentiate in a two-dimensional (2D) culture when grown to confluence attached to a plastic Petri dish surface in the presence of a steroid such as Hydrocortisone or Dexamethasone, in addition to Insulin and Prolactin (HIP medium) lacking epidermal growth factor (EGF), an inhibitor of differentiation5,6,7. Under these conditions, HC11 cells produce milk proteins such as β-casein and WAP, which are detectable by Western blotting within 4 days following induction. At the same time, a portion of HC11 cells forms rudimentary mammary gland-like structures termed "domes" in a stochastic manner. Domes are visible 4–5 days following induction and gradually increase in size up to day 10, concomitant with an increase in β-casein production8. Interestingly, HC11 cells possess mutant p539, and therefore represent a preneoplastic state. For this reason, the HC11 model is ideally suited to study signaling networks of differentiation in conjunction with neoplasia in the same cell system.
EpH4 cells, a derivative of IM-2 cells, are a nontumorigenic cell line originally derived from spontaneously immortalized mouse mammary gland epithelial cells isolated from a mid-pregnant Balb/c mouse10. EpH4 cells form continuous epithelial monolayers in 2D culture, but do not differentiate into glandular-like structures10,11. However, following 3D growth in a material consisting of a mixture of extracellular matrix proteins produced by EHS mouse sarcoma cells12 (EHS matrix, matrix, or Matrigel, see Table of Materials), in addition to stimulation with HIP, EpH4 cells can recapitulate the initial stages of mammary gland differentiation. Under these conditions, EpH4 cells form spheroids (also called mammospheres) that exhibit apical-basal polarity and a hollow lumen, and are capable of producing the milk proteins β-casein and WAP, similar to lactating mammary epithelial cells. Contrary to HC11 cells, which are undifferentiated, and some express mesenchymal markers13, EpH4 cells exhibit a purely luminal morphology14. EpH4 cells have also been reported to produce milk proteins in 2D culture through stimulation with dexamethasone, insulin, and prolactin15. However, this approach precludes the study of regulatory effects that mimic the mammary gland microenvironment in 3D culture.
1. Plating HC11 Cells
2. Differentiation Induction, Monitoring, and Quantitation of HC11 Cells
3. Plating and 3D Growth of EpH4 Cells in EHS Matrix
NOTE: The matrix is liquid at temperatures <10 °C and solid at temperatures above. Store at -80 °C. Thaw at 4 °C the night before use. Pre-chill the tissue culture plates and pipette tips at -20 °C prior to handling and keep the matrix, plates, and pipette tips on ice to prevent it from solidifying.
4. Differentiation Induction of EpH4 Cells Grown in 3D (Figure 2)
NOTE: Besides differentiation, EpH4 cells can also undergo tubulogenesis when stimulated with HGF (hepatocyte growth factor) in 3D culture. Tubular outgrowths can be seen after 10 days of HIP and HGF stimulation.
5. Tubulogenesis Induction of EpH4 Cells Grown in 3D (Figure 3A and 3C)
6. Quantitation of Differentiation: Western Blotting for β-casein
It has long been known that the differentiation of epithelial cells and adipocytes requires confluence and engagement of cadherins2. We and others demonstrated that cell-to-cell adhesion and engagement of E- or N-cadherin and cadherin-11, as occurs with the confluence of cultured cells, triggers a dramatic increase in the activity of the small GTPases Rac and cell division control protein 42 (Cdc42), and this process leads to activation of interleukin–6 (IL6) family cytokines and Stat3 (sign...
HC11 cells are ideally suited for the study of differentiation in conjunction with neoplastic transformation. An added advantage is that HC11 cells are easily infectable with Mo-MLV-based retroviral vectors to express a variety of genes. In our hands, EpH4 cells were more difficult to infect with the same retroviral vectors than HC112.
Cell-to-cell contact and growth arrest are key prerequisites for HC11 cell differentiation. Thus, to achieve uniform differentiation acr...
The authors have no conflicts to disclose.
The HC11 cell line was kindly provided by Dr. D. Medina (Houston, TX). The authors are grateful to Dr. Andrew Craig of Queen's University for many reagents and valuable suggestions. EpH4 cells were a gift from Dr. C. Roskelley (UBC, Vancouver). Colleen Schick provided excellent technical assistance for 3D culture studies.
The financial assistance of the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Institutes of Health Research (CIHR), the Canadian Breast Cancer Foundation (CBCF, Ontario Chapter), the Canadian Breast Cancer Research Alliance, the Ontario Centres of Excellence, the Breast Cancer Action Kingston (BCAK) and the Clare Nelson bequest fund through grants to LR is gratefully acknowledged. BE received grant support from CIHR, CBCF, BCAK and Cancer Research Society Inc. PTG is supported by a Canada Research Chair, Canadian Foundation for Innovation, CIHR, NSERC and Canadian Cancer Society. MN was supported by a studentship from the Terry Fox Training Program in Transdisciplinary Cancer Research from NCIC, a Graduate award (QGA), and a Dean's Award from Queen's University. MG was supported by postdoctoral fellowships from the US Army Breast Cancer Program, the Ministry of Research and Innovation of the Province of Ontario and the Advisory Research Committee of Queen's University. VH was supported by a CBCF doctoral fellowship and a postdoctoral fellowship from the Terry Fox Foundation Training Program in Transdisciplinary Cancer Research in partnership with CIHR. Hanad Adan was the recipient of an NSERC summer studentship. BS was supported by a Queen's University graduate award.
Name | Company | Catalog Number | Comments |
30% Acrylamide/0.8% Bis Solution | Bio Rad | 1610154 | Western Blotting |
Anti-Cyclin D1 antibody | rabbit, Santa Cruz | sc-717 | Western Blotting |
Anti-p120 antibody | mouse, Santa Cruz | sc-373751 | Western Blotting |
Anti-β actin antibody | mouse, Cell Signalling technology | 3700 | Western Blotting |
Anti-β casein antibody | goat, Santa Cruz Biotechnology | sc-17971 | Western Blotting |
Aprotinin | Bio Shop | APR600 | Lysis Buffer |
Bicinchoninic Acid Solution | Sigma | B9643-1L-KC | Protein Determination |
Bovine serum albumin | Bio Shop | ALB007.500 | Protein Determination |
Clarity Western ECL Substrate | Bio Rad | 170-5061 | Western Blotting |
Copper(II) sulphate | Sigma | C2284-25ML | Protein Determination |
DAPI | Thermofisher Scientific | D1306 | Staining |
Digitonin | Calbiochem, Cedarlane Laboratories Ltd | 14952-500 | Staining |
EDTA | Bio Shop | EDT001.500 | |
Epidermal Growth Factor | Sigma | E9644 | Medium for HC11 Cells |
Fetal calf serum | PAA | A15-751 | Cell Culture Medium |
Goat- Anti Rabbit-HRP | Santa Cruz | SC-2004 | Western Blotting |
Hepatocyte Growth Factor recombinant | Gibco | PHG0321 | |
Hepes | Sigma | 7365-45-9 | Cell Culture |
Horse Anti-Mouse HRP | Cell Signalling Technology | 7076 | Western Blotting |
Hydrocortisone | Sigma | H0888 | HIP Medium |
insulin | Sigma | I6634 | HIP Medium |
Laminar-flow hood | BioGard Hood | Cell Culture | |
Leupeptin | Bio Shop | LEU001.10 | Lysis Buffer |
Matrix (Engelbreth-Holm-Swarm matrix, Matrigel) | Corning | CACB 354230 | |
Mouse Anti-Goat HRP | Santa Cruz | sc-8360 | Western Blotting |
Mowiol 4-88 Reagent | Calbiochem, Cedarlane Laboratories Ltd | 475904-100GM | Staining |
Multi-photon confocal microscope | Leica TCS SP2 | ||
Na3VO4 | Bio Shop | SOV850 | Lysis Buffer |
Na4P207 | Sigma | 125F-0262 | Lysis Buffer |
NaCl | Bio Shop | SOD001.1 | Western Blotting |
NaF | Fisher Scientific | 7681-49-4 | Lysis Buffer |
Nikon digital Camera | Coolpix 995 | ||
Nitrocellulose | Bio Rad | 1620112 | Western Blotting |
NP-40 | Sigma | 9016-45-9 | |
Paraformaldehyde | Fisher Scientific | 30525-89-4 | Staining |
Phase Contrast Microscope | Olympus IX70 | Cell Culture | |
Phenylmethylsuphonyl fluoride | Sigma | 329-98-6 | Lysis Buffer |
pMX GFP Rac G12V | Addgene | 14567 | |
Prolactin | Sigma | L6520 | HIP Medium |
RPMI-1640 | Sigma | R8758 | Cell Culture Medium |
Tissue Culture Dish 35 | Sarstedt | 83.3900. | Cell Culture |
Tissue Culture Plate-24 well | Sarstedt | 83.1836.300 | Cell Culture |
Transfer Apparatus | CBS Scientific Co | EBU-302 | Western Blotting |
Tris Acetate | Bio Shop | TRA222.500 | Western Blotting |
Trypsin | Sigma | 9002-07-7. | Cell Culture |
Tween-20 | Bio Shop | TWN510.500 | Western Blotting |
Veritical Gel Electrophoresis System | CBS Scientific Co | MGV-202-33 | Western Blotting |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved