A subscription to JoVE is required to view this content. Sign in or start your free trial.
Dissociated hippocampal cell culture is a pivotal experimental tool in neuroscience. Neural cell survival and function in culture is enhanced when coralline skeletons are used as matrices, due to their neuroprotective and neuromodulative roles. Hence, neural cells grown on coralline matrix show higher durability, and thereby are more adequate for culturing.
Cultures of dissociated hippocampal neuronal and glial cells are a valuable experimental model for studying neural growth and function by providing high cell isolation and a controlled environment. However, the survival of hippocampal cells in vitro is compromised: most cells die during the first week of culture. It is therefore of great importance to identify ways to increase the durability of neural cells in culture.
Calcium carbonate in the form of crystalline aragonite derived from the skeleton of corals can be used as a superior, active matrix for neural cultures. By nurturing, protecting, and activating glial cells, the coral skeleton enhances the survival and growth of these cells in vitro better than other matrices.
This protocol describes a method for cultivating hippocampal cells on a coralline matrix. This matrix is generated by attaching grains of coral skeletons to culture dishes, flasks, and glass coverslips. The grains assist in improving the environment of the cells by introducing them to a fine three-dimensional (3D) environment to grow on and to form tissue-like structures. The 3D environment introduced by the coral skeleton can be optimized for the cells by grinding, which enables control over the size and density of the grains (i.e., the matrix roughness), a property that has been found to influence glial cells activity. Moreover, the use of grains makes the observation and analysis of the cultures easier, especially when using light microscopy. Hence, the protocol includes procedures for generation and optimization of the coralline matrix as a tool to improve the maintenance and functionality of neural cells in vitro.
Cultures of dissociated neural cells, in this case hippocampal cells, are a valuable experimental model for studying neural growth and function by providing high cell isolation and accessibility1,2,3. This type of culture is frequently used in neuroscience, drug development, and tissue engineering due to the large amount of information that can be collected, such as rates of growth and viability, neurotoxicity, neurite outgrowth and networking, synaptic connectivity and plasticity, morphological modifications, neurites organization and wiring, etc.1,4,5,6,7.
Despite the significance of the cultures, the cultivated cells are usually forced to grow on glass coverslips in a two-dimensional monolayer. These strict environmental modifications significantly decrease the ability of neural cells to survive over time, because glass coverslips are non-nurturing substrates with a low adhesion strength, exhibiting a lower capacity to support cell growth8,9,10,11.
Because cultivated neural cells are forced to grow in challenging conditions, an essential approach to enhance their survival would be to imitate their natural environment as much as possible12,13. This could be achieved by using biomaterials that will act as matrices and mimic the extracellular matrix of the cells, enabling them to form a tissue-like structure and assist in their nourishment14.
The use of biomaterials is a promising approach in improving cell cultures, because they act as biocompatible scaffolds, providing mechanical stability and enhancing a variety of cell properties, including adhesion, survival, proliferation, migration, morphogenesis, and differentiation15,16,17. Several types of biomaterials are used to improve the conditions of the cells in vitro. Among them are biopolymers, or biological components that are usually part of the extracellular matrix of the cells. These biomaterials are mostly used as a form of polymerized coating agents or hydrogels18,19,20. On the one hand, the matrices mentioned above give the cells a familiar 3D environment to grow in, encourage their adhesion to the dish, and give them mechanical support21,22. On the other hand, their polymerized form and the confinement of the cells within hydrogels disturbs the access of the cells to nurturing components present in the growth media and also makes the follow up of the cells by microscopic methods more difficult23.
Coral exoskeletons are biological marine-originated matrices. They are made of calcium carbonate, have mechanical stability, and are biodegradable. Previous studies using the coral skeleton as a matrix for growing neural cells in culture have shown much greater adhesion, compared to glass coverslips24,25. In addition, neural cells grown on coral skeleton demonstrated their capability to intake the calcium the skeleton is composed of, which protects the neural cells in conditions of nutrient deprivation26. Moreover, the coral skeleton is a supportive and nurturing matrix that increases the survival of neural cells, encourages the formation of neural networks, elevates the rate of synaptic connectivity, and enables the formation of tissue-like structures27,28. Recent studies have also shown that the surface topography of the coral skeleton matrix plays a crucial role in the distribution and activation of glial cells8,29. Also, coral skeleton is effective as a matrix for cultivation of other cell types, such as osteocytes30,31, hepatocytes, and cardiomyocytes in culture (unpublished data).
Hence, coral skeleton is a promising matrix for cultivation of cells in vitro. Thus, the protocol detailed below describes the technique of cultivating neural cells on coral skeleton for producing more stable and prosperous neural cultures than those achieved by existing methods. This protocol may also be useful for cultivation of cardiomyocytes, hepatocytes, and other cell types.
The use of animals in this protocol was approved by the National Animal Care and Use Committee.
NOTE: Calcium carbonated coral skeletons should be used in the crystalline form of aragonite. The coral types tested so far for neural cultures are Porites Lutea, Stylophora Pistillata, and Trachyphyllia Geoffroyi. The skeletons can be purchased whole or ground.
1. Cleaning the coral skeleton pieces
CAUTION: The following steps should be performed in a chemical hood at room temperature, because the solutions described below are hazardous and may cause burns and irritations.
2. Cleaning the glass coverslips
3. Preparation of coral skeleton grains
4. Purification of grains of a specific size range
NOTE: If control over the size of the grains in a matrix is desired, use the following filtration-based grain purification procedure.
5. Preparation of coral grain-coated dishes or coverslips
6. Cultivation of hippocampal dissociated cells on coral skeleton grain-coated glass coverslips
NOTE: The method for hippocampal dissociated cell culture was modified from previously published procedures24,27. The preparation of the culture is described for four rat pups. The expected yield from each hippocampus is 1–1.5 x 106 cells.
In order to prepare the coral skeleton matrix, the entire coral skeleton (Figure 1A) was broken into 0.5–2 cm fragments using a hammer (Figure 1B) and thoroughly cleaned from organic residues through three steps (step 1 in the protocol) using 10% hypochlorite solution, 1M NaOH solution, and 30% H2O2 solution (Figure 1C). Coral fragments were well-cleaned when the skeleton color changed from brown (
The technique presented here describes a way to improve the maintenance and functionality of neural cells in culture. This is achieved by adhering the cells to a matrix made of coral skeleton grains that nurtures the cells and promotes their growth and activity. Using this technique increases the capacity of the neural culture model to mimic the cells' environment in the brain.
The introduction of the matrix as a culture substrate has several advantages over other substrates used in classi...
The authors declare that they have no competing financial interests.
This work was funded by the KAMIN program of the Israeli Trade and Labor Ministry and by Qrons Inc., 777 Brickell Avenue Miami, FL 33131, US.
Name | Company | Catalog Number | Comments |
24-well plates | Greiner | #60-662160 | |
B-27 | Gibco | #17504-044 | |
Bovine Serum Albumin (BSA) | Sigma | #A4503 | |
D – glucose | Sigma | #G8769 | |
Dulbecco's Minimal Essential Eagle (DMEM) | Sigma | #D5796 | |
Electrical sieve | Ari Levy | #3700 | |
Fetal Bovine Serun (FBS) | Biological Industries | #04-007-1A | |
First Day Medium | 85.1% Minimum Essential Eagle’s medium (MEM), 11.5% heat-inactivated fetal bovine serum, 1.2% L-Glutamine and 2.2% D-Glucose. | ||
Flasks | Greiner | #60-690160 | 25cm^2, Tissue culture treated |
Fluoro-deoxy-uridine | Sigma | #F0503 | |
Glass Coverslips | Menzel-Glaser | #BNCB00120RA1 | |
H2O2 | Romical | #007130-72-19 | Hazardous |
Ham's F-12 Nutrient Mixture | Sigma | #N4888 | |
HANK'S solution | Sigma | #H6648 | |
Kynurenic acid | Sigma | #K3375 | |
L - glutamine | Sigma | #G7513 | |
Manual strainer (40µm) | VWR | #10199-654 | |
Minimun Essential Eagle (MEM) | Sigma | #M2279 | |
Mortar and pestle | De-Groot | 4-P090 | |
NaClO (Sodium Hypochlorite) | Sigma | #425044 | Hazardous |
NaOH | Sigma | #S8045 | Hazardous |
Neuronal Growth Medium | 45% MEM, 40% Dulbecco's modified eagle's medium (DMEM), 10% Nutrient mixture F-12 Ham, 0.25% (w/v) bovine serum albumin (BSA), 0.75% D-glucose, 0.25% L-Glutamine, 0.5% B-27 supplement, 0.1% kynurenic acid, 0.01% of 70 % uridine and 30% fluoro-deoxy-uridine. | ||
Petri dish | Greiner | #60-628160, #60-627160 | 60mm, 35mm, respectively. |
Poly D – Lysine | Sigma | #P7280 | |
Smart Dentin Grinder | KometaBio | #GR101 | |
Trypsin | Gibco | #15-090-046 | |
Uridine | Sigma | #U3750 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved