Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol demonstrates methods to enable extended in vitro culture of patient-derived xenografts (PDX). One step enhances overall viability of multicellular cluster cultures in 3D hydrogels, through straightforward removal of non-viable single cells. A secondary step demonstrates best practices for PDX culture in a perfused microfluidic platform.

Abstract

Patient-derived xenografts (PDX), generated when resected patient tumor tissue is engrafted directly into immunocompromised mice, remain biologically stable, thereby preserving molecular, genetic, and histological features, as well as heterogeneity of the original tumor. However, using these models to perform a multitude of experiments, including drug screening, is prohibitive both in terms of cost and time. Three-dimensional (3D) culture systems are widely viewed as platforms in which cancer cells retain their biological integrity through biochemical interactions, morphology, and architecture. Our team has extensive experience culturing PDX cells in vitro using 3D matrices composed of hyaluronic acid (HA). In order to separate mouse fibroblast stromal cells associated with PDXs, we use rotation culture, where stromal cells adhere to the surface of tissue culture-treated plates while dissociated PDX tumor cells float and self-associate into multicellular clusters. Also floating in the supernatant are single, often dead cells, which present a challenge in collecting viable PDX clusters for downstream encapsulation into hydrogels for 3D cell culture. In order to separate these single cells from live cell clusters, we have employed density step gradient centrifugation. The protocol described here allows for the depletion of non-viable single cells from the healthy population of cell clusters that will be used for further in vitro experimentation. In our studies, we incorporate the 3D cultures in microfluidic plates which allow for media perfusion during culture. After assessing the resultant cultures using a fluorescent image-based viability assay of purified versus non-purified cells, our results show that this additional separation step substantially reduced the number of non-viable cells from our cultures.

Introduction

Over the past decade, the field of cancer research has demonstrated renewed enthusiasm for patient-derived xenografts (PDXs) as a tool for assessing cancer cell pathway reliance and drug susceptibility1. The most common PDX models are established by subcutaneous or orthotopic implantation of human tumor cells—a tumor fragment, a cluster of dissociated tumor-derived cells, or a sample of isolated circulating tumor cells (CTCs)—into a rodent host. If the tumor “take” is successful, the xenograft cells will proliferate, vascularize, and otherwise interact with the host tissue to create a tumor, which can be harvested at an ....

Protocol

Tumor tissue was obtained with patient consent and according to an approved Institutional Review Board (IRB) protocol. Xenografts were implanted, grown, and harvested according to an accepted Institutional Animal Care and Use Committee (IACUC) protocol.

NOTE: All work is to be performed in a sterile biological safety cabinet to maintain sterility. All steps should be conducted at room temperature unless otherwise specified.

1. Preparation of materials for PDX processi.......

Representative Results

A programmable perfusion rocker was prepared in a standard water-jacked cell culture incubator, and two-lane microfluidic plates were prepared in a standard biosafety cabinet for loading (Figure 1). An MDA-PCA-118b PDX tumor was expanded in vivo, harvested when it had reached a maximum size, and dissociated as described in protocol section 2 to create a slurry suspension of cells, at approximately a single-cell state (Figure 2A). The slurry was dispensed into 6-.......

Discussion

Here we describe a method for processing and culturing viable PDX-derived tumor cells in a high-throughput, perfused 3D culture system. While this protocol utilizes PCa PDX tissue, it is equally effective for other epithelial-derived tumors. Tumor characteristics vary between individual PDX lines even within the same tissue of origin (prostate, breast, etc.). Some PCa PDX lines are more fibrotic and difficult to isolate viable cells from while others are more cellular. The tumor size noted here can be varied within IACUC.......

Acknowledgements

This work was supported by National Institutes of Health National Cancer Institute SBIR Phase I (HHSN26120700015C) and P01CA098912.

....

Materials

NameCompanyCatalog NumberComments
1N NaOHany suitable tissue culture grade
60 mm round tissue culture dishesany suitable
6-well tissue culture platesany suitable
70 µm cell strainersCorning431751or equivalent
CentrifugeEppendorf5810R with suitable rotor and buckets for 15/50 mL conical centrifuge tubesor equivalent
Density gradient centrifugation solutionMillipore SigmaP1644Percoll
Dimethylsulfoxideany suitable tissue culture grade
Dissociation enzyme solutionStemCell Technologies07921ACCUMAX
DMEM-F12ThermoFisher Scientific11039021or equivalent
Forcepsany suitable
HA hydrogel kitESI BIOGS311HyStem (Hyaluronic acid-SH and PEGDA)
Hanks Balanced Salt SolutionLonza10-527For equivalent
Heat-inactivated fetal bovine serumAtlanta BiologicalsS11150
HemocytometerFisher Scientific02-671-51B Hausser BrightLineor equivalent
Hoechst 33342ThermoFisher ScientificH1398or equivalent
Image processing softwareOxford InstrumentsImaris 9.3or equivalent
LIVE/DEAD Cell Viability/Cytotoxicity Kit (Calcein-AM/Ethidium Homodimer-1)ThermoFisher ScientificL3224or equivalent
Microfluidic culture plateMimetas9603-400-B2-lane OrganoPlate
MicroscopeNikonA1Ror equivalent
Multichannel pipetteEppendorf3125000036or equivalent
PDX-derived tumor tissueobtained under IRB approval for human tissue and IACUC approval for animal host
Penicillin-streptomycinThermoFisher Scientific15140-122or equivalent
Perfusion rockerMimetasOrganoPlate Perfusion Rocker Mini
pH strips (pH 5-9)any suitable
Phosphate-buffered saline solutionLonza17-516For equivalent
Razor bladesany suitable
Rotating xy-shakerVWRAdvanced 3500 Orbital Shakeror equivalent
Scalpel handleany suitable
Single channel repeating pipetteEppendorf22260201
Sterile, 15mL conical centrifuge tubesany suitable
Sterile, 50mL conical centrifuge tubesany suitable

References

  1. Jung, J., Seol, H. S., Chang, S. The Generation and Application of Patient-Derived Xenograft Model for Cancer Research. Cancer Research and Treatment: Official Journal of Korean Cancer Association. 50 (1), 1-10 (2018).
  2. Malaney, P., Nicosia, S. V., Dave, V.

Explore More Articles

Patient derived XenograftsPDX3D Hydrogel CulturesMicrofluidic PlatformEx Vivo CultureTumor CellsDrug ScreeningHeterogeneous SystemsCo culturesStromaEndotheliumImmune CellsTumor ArchitectureCell LoadingCell AlignmentTumor DissociationCell CountingCell Density

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved