A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
A modified 2 kidney 1 clip (2K1C) Goldblatt mouse model was developed using polyurethane tubing to initiate renal artery stenosis, inducing an increase in renin expression and kidney injury. Here, we describe a detailed procedure of preparing and placing the cuff onto the renal artery to generate a reproducible and consistent 2K1C mouse model.
Renal artery stenosis is a common condition in patients with coronary or peripheral vascular disease where the renin angiotensin aldosterone system (RAAS) is overactivated. In this context, there is a narrowing of the renal arteries that stimulate an increase in the expression and release of renin, the rate-limiting protease in RAAS. The resulting rise in renin expression is a known driver of renovascular hypertension, frequently associated with kidney injury and end organ damage. Thus, there is a great interest in developing novel treatments for this condition. The molecular and cellular mechanism of renin control in renal artery stenosis is not fully understood and warrants further investigation. To induce renal artery stenosis in mice, a modified 2 kidney 1 clip (2K1C) Goldblatt mouse model was developed. The right kidney was stenosed in wild type mice and sham operated mice were used as control. After renal artery stenosis, we determined renin expression and kidney injury. Kidneys were harvested, and fresh cortices were used to determine protein and mRNA expression of renin. This animal model is reproducible and can be used to study pathophysiological responses, molecular and cellular pathways involved in renovascular hypertension and kidney injury.
Renal artery stenosis (RAStenosis) is an intractable problem affecting about 6% of people over 65 and in up to 40% of people with coronary or peripheral vascular disease1,2. Current treatments for the disease are limited; therefore, there is a critical need to develop new therapies to treat renovascular hypertension or resistant hypertension induced by RAStenosis. Renin angiotensin aldosterone system (RAAS) is the key pathway involved in the pathogenesis of RAStenosis induced hypertension or renovascular hypertension3,4. Known therapies targeting RAAS, such as ACE inhibitors or angiotensin receptor blockers, alleviate hypertension, but need close examining for kidney failure and hyperkalemia5,6,7. Renin catalyzes the rate-limiting step in RAAS; it converts angiotensinogen to angiotensin I. In atherosclerosis, plaque formation causes the narrowing of renal artery that drives renin secretion, resulting in renovascular hypertension and kidney damage8. A number of studies have reported increased levels of oxidative stress during renovascular hypertension in humans, which were corroborated with the two kidney one clip (2K1C) mice model as well as other hypertensive animal models2,9,10,11,12,13,14,15,16. The molecular mechanism of renin expression control during RAStenosis induced renovascular hypertension is not well understood and warrants further investigation.
Experimental animal models that reliably and reproducibly recapitulate RAStenosis are important in elucidating the cellular and molecular mechanisms of renin expression control for the development of novel therapies. The 2K1C mouse model is a well-established experimental model to study the pathogenesis of renovascular hypertension17,18,19,20. This model is generated by the constriction of the renal artery using a clip17,20,21, therefore producing renal artery occlusion that results in an increase in renin expression and hypertension17,19,20,21. However, there are no technical reports available, which describe a step by step procedure to generate renal artery stenosis in animal models.
Conventional U-shaped silver clips, polyurethane tubes and other clips have been used to constrict the renal artery to induce renal artery stenosis. Some studies have shown that the design and material of the clip are critical to obtaining reliable and reproducible data with the 2K1C animal model. According to Lorenz et al., the use of conventional U-designed silver clips induces a low success rate of hypertension (40-60%)21. Due to the clip design, the renal artery is press laterally, triggering a few constrictions and greater probability to be dislodged from the renal artery. Silver malleability and ductility may allow changes in clip widths; therefore, causing different hypertension levels among mice. Silver dioxides on the clip can cause perivascular inflammation, intimal proliferation, and tissue granulation, altering the renal artery diameter22. Due to the variability in the levels of hypertension obtained with the conventional U-design silver clip, Warner et al. and Lorenz et al. have successfully used a rounder-design polyurethane tubing to initiate renal artery stenosis in mice, generating a more reliable and consistent induction of the two kidney one clip animal model20,21.
In this report, we describe a surgical protocol to generate experimental RAStenosis in mice, using the polyurethane tubing to constrict the renal artery. The polyurethane round-design cuff is a more reproducible, reliable and low-cost clip to generate stenosis in mouse. The goal of this experimental model is to study and define the molecular and cellular mechanism of renin expression control during renal artery stenosis. We confirmed the success of RAStenosis mice model by measuring renin expression and kidney injury marker neutrophil gelatinase-associated lipocalin (N-GAL).
Mice were housed and cared at the Vanderbilt University Medical Center (VUMC) Division of Animal Care following the National Institutes of Health (NIH) guidelines and the Guide for the Care and Use of Laboratory Animals, US Department of Health and Human Services. All animal procedures were approved by the VUMC Institutional Animal Care and Use Committee prior to starting the experiments.
1. Animal preparation and dissection
2. Right renal artery stenosis
3. Post-operative care
4. Tissue harvest
5. Statistics
Renal artery constriction increases renin expression in the stenosed kidney while repressing expression in the contralateral kidney. The two kidney one clip (2K1C) or Goldblatt model of stenosis induces increased renin expression and kidney injury. This is recognized as the best representative model of unilateral renal artery stenosis in humans.
Expression of renin and prorenin (precursor of renin) were measured using immunoblotting. The data show that renin and prorenin expression increa...
Renal artery stenosis is an important cause of secondary or resistant hypertension, and kidney injury1,29. The two kidney one clip (2K1C) Goldblatt model has been employed to study RAStenosis induced renovascular hypertension1,17,18,19. A number of previous studies using various animals models have shown that stenosis in the renal arter...
No conflicts of interest, financial or otherwise, are declared by the authors.
Research was supported by NHLBI Research Scientist Development Grant (1K01HL135461-01) to JAG. Thank you to David Carmona-Berrio, and Isabel Adarve-Rengifo for their technical assistance.
Name | Company | Catalog Number | Comments |
Diet Gel | Clear H2O | Diet-Gel 76A | Surgery recovery diet |
EMC Heated Hard pad | Hallowell | 000A2788B | Heating pads were used to keep mice warm |
Ethilon Nylon Suture | Ethicon | 662G | 4-0 (1.5 metric), This suture was used to close the peritoneum, and skin |
Ethilon Nylon Suture | Ethicon | 2815 G | 8-0 (0.4 metric), This suture was used to close cuff to tie and constrict the artery |
Germinator 500 | Braintree Scientific Inc. | GER 5287 | Sterilize surgical tools between surgeries |
Ketoprofen | Zoetis | Ketofen | Painkiller |
Polyurethane | Braintree Scientific Inc. | MRE-025 | This tube was used to initiate stenosis |
Povidone-iodine antiseptic swabsticks | Medline | MDS093901 | It was applied after hair removal and surgery on the skin |
Reflex 7 Clip Applier | Roboz Surgical Instrument Co | 204-1000 | This clip applier was used to apply clip in case one or more sutures went off |
Sterile towel drapes | Dynarex | 4410 | It was used as a bedsheet for mice during surgery |
Triple antibiotic ointment | Medi-First | 22312 | |
Water pump | Stryker | T/pump Professionals | Used to warm and circulate water in the heating hard pad to keep mice warm during and post-surgery |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved