Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

A microplot design for 15N tracer research is described to accommodate multiple in-season plant and soil sampling events. Soil and plant sample collection and processing procedures, including grinding and weighing protocols, for 15N analysis are put forth.

Abstract

Many nitrogen fertilizer studies evaluate the overall effect of a treatment on end-of-season measurements such as grain yield or cumulative N losses. A stable isotope approach is necessary to follow and quantify the fate of fertilizer derived N (FDN) through the soil-crop system. The purpose of this paper is to describe a small-plot research design utilizing non-confined 15N enriched microplots for multiple soil and plant sampling events over two growing seasons and provide sample collection, handling, and processing protocols for total 15N analysis. The methods were demonstrated using a replicated study from south-central Minnesota planted to corn (Zea mays L.). Each treatment consisted of six corn rows (76 cm row-spacing) 15.2 m long with a microplot (2.4 m by 3.8 m) embedded at one end. Fertilizer-grade urea was applied at 135 kg N∙ha-1 at planting, while the microplot received urea enriched to 5 atom % 15N. Soil and plant samples were taken several times throughout the growing season, taking care to minimize cross-contamination by using separate tools and physically separating unenriched and enriched samples during all procedures. Soil and plant samples were dried, ground to pass through a 2 mm screen, and then ground to a flour-like consistency using a roller jar mill. Tracer studies require additional planning, sample processing time and manual labor, and incur higher costs for 15N enriched materials and sample analysis than traditional N studies. However, using the mass balance approach, tracer studies with multiple in-season sampling events allow the researcher to estimate FDN distribution through the soil-crop system and estimate unaccounted-for FDN from the system.

Introduction

Fertilizer nitrogen (N) use is essential in agriculture to meet the food, fiber, feed, and fuel demands of a growing global population, but N losses from agricultural fields can negatively impact environmental quality. Because N undergoes many transformations in the soil-crop system, a better understanding of N cycling, crop utilization, and the overall fate of fertilizer N are necessary to improve management practices that promote N use efficiency and minimize environmental losses. Traditional N fertilizer studies primarily focus on the effect of a treatment on end-of-season measurements such as crop yield, crop N uptake relative to the N rate applied (apparent ferti....

Protocol

1. Field site description

NOTE: When performing 15N tracer field trials, selected sites should minimize variation due to soil, topography, and physical features5. Cross-contamination may occur following lateral soil movement due to slope, wind or water translocation, or tillage while the vertical distribution of soil N may be impacted by subsurface water flow and tile-drainage6.

  1. Describe the experimental field site includin.......

Representative Results

The results presented in this paper come from a field site established in 2015 at the University of Minnesota Southern Outreach and Research Center located near Waseca, MN. The site was managed as a corn-soybean [Glycine max (L.) Merr] rotation prior to 2015 but was managed as a corn-corn rotation during the 2015 and 2016 growing seasons. The soil was a Nicollet clay loam (fine-loamy, mixed, superactive, mesic Aquic Hapludolls)-Webster clay loam (fine-loamy, mixed, superactive, m.......

Discussion

Stable isotope research is a useful tool for tracking and quantifying FDN through the soil-crop system. However, there are three main assumptions associated with N tracer studies that if violated may invalidate conclusions drawn from using this methodology. They are 1) the tracer is uniformly distributed throughout the system, 2) processes under the study occur at the same rates, and 3) N leaving the 15N enriched pool does not return3. Because this study is interested in the distributio.......

Acknowledgements

The authors acknowledge the support of the Minnesota Corn Research & Promotion Council, the Hueg-Harrison Fellowship, and the Minnesota's Discovery, Research and InnoVation Economy (MnDRIVE) Fellowship.

....

Materials

NameCompanyCatalog NumberComments
20 mL scintillation vialANY; Fisher Scientific is one example0334172C
250 mL borosilicate glass bottleQORPAK264047
48-well plateEA ConsumablesE2063
96-well plateEA ConsumablesE2079
Cloth parts bag (30x50 cm)ANYNAFor corn ears
CO2 Backpack SprayerANY; Bellspray Inc is one exampleModel T
Coin envelop (6.4x10.8 cm)ANY; ULINE is one exampleS-6285For 2-mm ground plant samples
Corn chipperANY; DR Chipper Shredder is one exampleSKU:CS23030BMN0For chipping corn biomass
Corn seedANYNAHybrid appropriate to the region
Disposable shoe coverANY; Boardwalk is one exampleBWK00031L
Ethanol 200 ProofANY; Decon Laboratories Inc. is one example2701TP
Fabric bags with drawstring (90x60 cm)ANYNAFor plant sample collection
Fertilizer Urea (46-0-0)ANYNA~0.366 atom % 15N
Hand rakeANY; Fastenal Company is one example5098-63-107
Hand sickleANY; Home Depot is one exampleNJP150For plant sample collection
Hand-held soil probeANY; AMS is one example401.01
Hydraulic soil probeANY; Giddings is one exampleGSPS
Hydrochloric acid, 12NRicca ChemicalR37800001A
Jar millANY; Cole-Parmer is one exampleSI-04172-50
Laboratory MillPerten3610For grinding grain
Microbalance accurate to four decimal placesANY; Mettler Toledo is one exampleXPR2
N95 Particulate Filtering Facepiece RespiratorANY, ULINE is one exampleS-9632
Neoprene or butyl rubber glovesANYNAFor working in HCl acid bath
Paper hardware bags (13.3x8.7x27.8 cm)ANY; ULINE is one exampleS-8530For soil samples and corn grain
Plant grinderANY; Thomas Wiley Model 4 Mill is one example1188Y47-TSFor grinding chipped corn biomass to 2-mm particles
Plastic tagsULINES-5544Y-PWFor labeling fabric bags and microplot stalk bundles
Sodium hydroxide pellets, ACSSpectrum ChemicalSPCM-S1295-07
Soil grinderANY; AGVISE stainless steel grinder with motor is one exampleNAFor grinding soil to pass through a 2-mm sieve
Tin capsule 5x9 mmCostech Analytical Technologies Inc.041061
Tin capsule 9x10 mmCostech Analytical Technologies Inc.041073
Urea (46-0-0)MilliporeSigma49097010 atom % 15N

References

  1. Sharp, Z. . Principles of Stable Isotope Geochemistry. , (2017).
  2. Van Cleemput, O., Zapata, F., Vanlauwe, B. Guidelines on Nitrogen Management in Agricultural Systems. Guidelines on Nitrogen Management in Agricultural Systems. 29 (29), 19 (2008).
  3. ....

Explore More Articles

15Nitrogen AnalysisMicroplot DesignPlant And Soil Sample PreparationNitrogen Use EfficiencyNitrogen CycleNitrogen Fertilizer ManagementCornBiomass SamplingEnriched UreaVolatilization

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved