Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

A highly parallel method for measuring the site-specific cleavage of DNA at the single molecule level is described. This protocol demonstrates the technique using the restriction endonuclease NdeI. The method can easily be modified to study any process that results in site-specific DNA cleavage.

Abstract

Site-specific DNA cleavage (SSDC) is a key step in many cellular processes, and it is crucial to gene editing. This work describes a kinetic assay capable of measuring SSDC in many single DNA molecules simultaneously. Bead-tethered substrate DNAs, each containing a single copy of the target sequence, are prepared in a microfluidic flow channel. An external magnet applies a weak force to the paramagnetic beads. The integrity of up to 1,000 individual DNAs can be monitored by visualizing the microbeads under darkfield imaging using a wide-field, low magnification objective. Injecting of a restriction endonuclease, NdeI, initiates the cleavage reaction. Video microscopy is used to record the exact moment of each DNA cleavage by observing the frame in which the associated bead moves up and out of the focal plane of the objective. Frame-by-frame bead counting quantifies the reaction, and an exponential fit determines the reaction rate. This method allows collection of quantitative and statistically significant data on single molecule SSDC reactions in a single experiment.

Introduction

Site-specific DNA cleavage (SSDC) is a key step in many genomic transactions. For example, bacterial restriction-modification (RM)1 and CRISPR2 systems protect cells from attack by phages and plasmids by recognizing and cleaving foreign DNA at specific sequences. In type II RM, restriction endonucleases (REs) recognize short 4–8 base pair (bp) sequences via protein-nucleic acid interactions3. CRISPR-associated endonucleases, such as Cas9, bind to sites via hybridization of the target site with crRNAs bound to the endonucleases4. The creation of site-specific double st....

Protocol

1. Making the flow cell

  1. Washing the coverslips
    1. Place coverslips in staining jars and sonicate with ethanol (EtOH), then with 1 M KOH (for 30 min each). To avoid KOH precipitation in EtOH, rinse thoroughly with ddH2O between washes.
    2. Repeat both EtOH and the KOH washing steps 1x for a total number of four washes (two EtOH and two KOH). Store cleaned coverslips in ddH2O in staining jars.
  2. Cut loading and exit tubes (8 cm long) using a clean razo.......

Representative Results

Using this technique, the SSDC rates of NdeI were measured for a range of protein concentrations (0.25–4.00 U/mL) at two different concentrations of magnesium (2 mM and 4 mM). Each of these conditions was replicated at least twice, with a few hundred to 1,000 tethered DNAs per experiment. Figure 2 describes the experimental design. Figure 3 shows examples of data collection and analysis details. Figure 4 illustrates how the ra.......

Discussion

The protocol can be used to measure the kinetics of any SSDC system, provided that the strand separation is observed during the experiment. The detection of cleavage is affected by observing the detachment of the tethered bead and therefore marks the instant of strand separation. All preceding steps occur before the detection of the cleavage; thus, only the total transit time is recorded.

The flow cell coverslip is functionalized via non-specific adsorption of antibody protein to the clean gla.......

Acknowledgements

This work was supported by the National Science Foundation grant MCB-1715317.

....

Materials

NameCompanyCatalog NumberComments
5 minute EpoxyDevcon14250
anti-digoxigenin FAB fragmentsRoche Diagnostics11214667001
camera and softwareJenoptikGRYPHAX SUBRA
data analysis softwareVernier Inc.LP
double sided tapeGrace BiolabsSA-S-1L
Dulbeccos Phosphate Buffered SalineCorning21-031-CV
ethanol 95%VWR89370-082
forward primer: digoxigenin-CCAACTTAATCGCCTTGCIntegrated DNA Technologiesn/a
image analysis softwareNational Institutes of HealthImageJ
inverted microscopeNikonTE2000
knife printerSilhouette
M13mp18 DNANew England BiolabsN4040S
MyOne streptavidin beadsThermo Fisher Scientific65601
NdeI enzymeNew England BiolabsR0111S
PCR cleanup kitQiagen28104
pluronic F-127AnatraceP305
polyethylene tubing PE-20BD Intramedic427406
polyethylene tubing PE-60BD Intramedic427416
Q5 MastermixNew England BiolabsM0492S
rare earth magnet 0.5" OD 0.25" IDNational ImportsNSN0814
rare earth magnet 0.75" OD 0.5" IDNational ImportsNSN0615
reverse primer: biotin-TGACCATTAGATACATTTCGCIntegrated DNA Technologiesn/a
syringe pumpKent ScientificGenie Plus
β-Casein from bovine MilkSigma-AldrichC6905

References

  1. Tock, M. R., Dryden, D. T. The biology of restriction and anti-restriction. Current Opinion in Microbiology. 8 (4), 466-472 (2005).
  2. Garneau, J. E., et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid ....

Explore More Articles

DNA CleavageSingle Molecule KineticsHigh ThroughputDNA BindingDNA ModificationDNA Target SearchFlow CellTetheringPCRBuffer AAnti digoxigeninFab Fragments

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved