A subscription to JoVE is required to view this content. Sign in or start your free trial.
A highly parallel method for measuring the site-specific cleavage of DNA at the single molecule level is described. This protocol demonstrates the technique using the restriction endonuclease NdeI. The method can easily be modified to study any process that results in site-specific DNA cleavage.
Site-specific DNA cleavage (SSDC) is a key step in many cellular processes, and it is crucial to gene editing. This work describes a kinetic assay capable of measuring SSDC in many single DNA molecules simultaneously. Bead-tethered substrate DNAs, each containing a single copy of the target sequence, are prepared in a microfluidic flow channel. An external magnet applies a weak force to the paramagnetic beads. The integrity of up to 1,000 individual DNAs can be monitored by visualizing the microbeads under darkfield imaging using a wide-field, low magnification objective. Injecting of a restriction endonuclease, NdeI, initiates the cleavage reaction. Video microscopy is used to record the exact moment of each DNA cleavage by observing the frame in which the associated bead moves up and out of the focal plane of the objective. Frame-by-frame bead counting quantifies the reaction, and an exponential fit determines the reaction rate. This method allows collection of quantitative and statistically significant data on single molecule SSDC reactions in a single experiment.
Site-specific DNA cleavage (SSDC) is a key step in many genomic transactions. For example, bacterial restriction-modification (RM)1 and CRISPR2 systems protect cells from attack by phages and plasmids by recognizing and cleaving foreign DNA at specific sequences. In type II RM, restriction endonucleases (REs) recognize short 4–8 base pair (bp) sequences via protein-nucleic acid interactions3. CRISPR-associated endonucleases, such as Cas9, bind to sites via hybridization of the target site with crRNAs bound to the endonucleases4. The creation of site-specific double st....
1. Making the flow cell
Using this technique, the SSDC rates of NdeI were measured for a range of protein concentrations (0.25–4.00 U/mL) at two different concentrations of magnesium (2 mM and 4 mM). Each of these conditions was replicated at least twice, with a few hundred to 1,000 tethered DNAs per experiment. Figure 2 describes the experimental design. Figure 3 shows examples of data collection and analysis details. Figure 4 illustrates how the ra.......
The protocol can be used to measure the kinetics of any SSDC system, provided that the strand separation is observed during the experiment. The detection of cleavage is affected by observing the detachment of the tethered bead and therefore marks the instant of strand separation. All preceding steps occur before the detection of the cleavage; thus, only the total transit time is recorded.
The flow cell coverslip is functionalized via non-specific adsorption of antibody protein to the clean gla.......
This work was supported by the National Science Foundation grant MCB-1715317.
....Name | Company | Catalog Number | Comments |
5 minute Epoxy | Devcon | 14250 | |
anti-digoxigenin FAB fragments | Roche Diagnostics | 11214667001 | |
camera and software | Jenoptik | GRYPHAX SUBRA | |
data analysis software | Vernier Inc. | LP | |
double sided tape | Grace Biolabs | SA-S-1L | |
Dulbeccos Phosphate Buffered Saline | Corning | 21-031-CV | |
ethanol 95% | VWR | 89370-082 | |
forward primer: digoxigenin-CCAACTTAATCGCCTTGC | Integrated DNA Technologies | n/a | |
image analysis software | National Institutes of Health | ImageJ | |
inverted microscope | Nikon | TE2000 | |
knife printer | Silhouette | ||
M13mp18 DNA | New England Biolabs | N4040S | |
MyOne streptavidin beads | Thermo Fisher Scientific | 65601 | |
NdeI enzyme | New England Biolabs | R0111S | |
PCR cleanup kit | Qiagen | 28104 | |
pluronic F-127 | Anatrace | P305 | |
polyethylene tubing PE-20 | BD Intramedic | 427406 | |
polyethylene tubing PE-60 | BD Intramedic | 427416 | |
Q5 Mastermix | New England Biolabs | M0492S | |
rare earth magnet 0.5" OD 0.25" ID | National Imports | NSN0814 | |
rare earth magnet 0.75" OD 0.5" ID | National Imports | NSN0615 | |
reverse primer: biotin-TGACCATTAGATACATTTCGC | Integrated DNA Technologies | n/a | |
syringe pump | Kent Scientific | Genie Plus | |
β-Casein from bovine Milk | Sigma-Aldrich | C6905 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved