A subscription to JoVE is required to view this content. Sign in or start your free trial.
In this paper, we describe a method to measure glycolysis and mitochondrial respiration in primary human Natural Killer (NK) cells isolated from peripheral blood, at rest or following IL15-induced activation. The protocol described could be easily extended to primary human NK cells activated by other cytokines or soluble stimuli.
Natural Killer (NK) cells mediate mainly innate anti-tumor and anti-viral immune responses and respond to a variety of cytokines and other stimuli to promote survival, cellular proliferation, production of cytokines such as interferon gamma (IFNγ) and/or cytotoxicity programs. NK cell activation by cytokine stimulation requires a substantial remodeling of metabolic pathways to support their bioenergetic and biosynthetic requirements. There is a large body of evidence that suggests that impaired NK cell metabolism is associated with a number of chronic diseases including obesity and cancer, which highlights the clinical importance of the availability of a method to determine NK cell metabolism. Here we describe the use of an extracellular flux analyzer, a platform that allows real-time measurements of glycolysis and mitochondrial oxygen consumption, as a tool to monitor changes in the energy metabolism of human NK cells. The method described here also allows for the monitoring of metabolic changes after stimulation of NK cells with cytokines such as IL-15, a system that is currently being investigated in a wide range of clinical trials.
Natural Killer (NK) cells are innate lymphocytes that mediate anti-tumor and anti-viral responses. NK cells comprise 5-15% of all lymphocytes in human peripheral blood, and can be also found in spleen, liver, bone marrow and lymph nodes. NK cells do not express polymorphic clonotypic receptors, such as T-cell receptors (TCR) or B-cell receptors (BCR). In contrast, the activation of their cytolytic functions is prompted by the engagement of receptors that recognize invariable ligands on the surface of a target cell1,2.
Resting human NK cells isolated from peripheral blood can survive....
All the experiments were performed in accordance with the Declaration of Helsinki’s ethical principles of medical research. Peripheral blood samples from donors were obtained from the NIH Department of Transfusion Medicine under the 99-CC-0168 IRB approved protocol, with patient written informed consent.
1. Reagent preparation
Isolation of NK cells from peripheral blood provides a pure and viable population
The extracellular flux assay is based on the measurement of H+ and O2 concentration in the well and will not distinguish among different populations of cells or their viability. For this reason, obtaining a highly pure and viable population of the cell of interest was the key step to succeed in these experiments.
The isolation of NK cells from per.......
In this paper, we have established a protocol for efficiently isolating and culturing pure and viable primary human NK cells from peripheral blood. We have also optimized the conditions for the measurement of the metabolic activity of these NK cells assessed by oxygen consumption rate and extracellular acidification rate by using an extracellular flux analyzer. Compared to other respirometric methods, the extracellular flux analyzer is fast, requires small numbers of cells, and allows high throughput screenings. However,.......
The authors thank Dr. Michael N. Sack (National Heart, Lung, and Blood Institute) for support and discussion. This study was supported by the Intramural Research Programs of the National Institutes of Health, National Cancer Institute and National Heart, Lung, and Blood Institute. JT is supported by the Ramon y Cajal program (grant RYC2018-026050-I) of MICINN (Spain).
....Name | Company | Catalog Number | Comments |
2-Deoxy-D-glucose (2-DG) | MilliporeSigma | D8375-5G | Glycolyisis stress test injector compound |
2,4-Dinotrophenol (2,4-DNP) | MilliporeSigma | D198501 | ETC uncoupler / mitochondrial stress test injector compound |
96 Well Cell Culture Plate/ Round bottom with Lid | Costar | 3799 | NK cell culture |
Antimycin A | MilliporeSigma | A8674 | Complex III inhibitor / glycolysis and mitochondrial stress test injector compound |
BD FACSDIVA Software | BD Biosciences | Flow data acquisition | |
BD LSR Fortessa | BD Biosciences | Flow data acquisition | |
Cell-Tak | Corning | 354240 | Cell adhesive |
CyQUANT cell proliferation assay | ThermoFisher Scientific | C7026 | Cell proliferation Assay for DNA quantification. Contains cell-lysis buffer and CyQUANT GR dye |
EasySep Human CD3 Positive Selection Kit II | Stemcell technologies | 17851 | NK cell isolation from PBMCs |
EasySep Human NK cell Enrichment Kit | Stemcell technologies | 19055 | NK cell isolation from PBMCs |
EasySep Magnet | Stemcell technologies | 18001 | NK cell isolation from PBMCs |
EDTA 0.5 M, pH 8 | Quality Biological | 10128-446 | NK sell separation buffer |
FACS tubes | Falcon-Fisher Scientific | 352235 | Flow cytometry experiment |
Falcon 50 ml Conical tubes | Falcon-Fisher Scientific | 14-432-22 | NK cell separation |
Fetal Calf Serum (FCS) | Gibco | 10437-028 | NK cell separation buffer |
FlowJo Software | BD Biosciences | Flow data analysis | |
Glucose | MilliporeSigma | G8270 | Component of mitochondrial stress test medium. Glycolysis stress test injector compound |
Halt Protease Inhibitor Cocktail | ThermoFisher Scientific | 78429 | Protease inhibitor 100X. Use in RIPA lysis buffer |
Human IL-15 | Peprotech | 200-15-50ug | NK cell stimulation |
Human serum (HS) | Valley Biomedical | 9C0539 | NK cell culture medium supplement |
IMDM | Gibco | 12440053 | NK cell culture medium |
L-Glutamine (200 mM) | ThermoFisher Scientific | 25030-081 | Component of stress test media |
LIVE/DEAD Fixable Aqua Dead Cell Stain Kit | ThermoFisher Scientific | L34965 | Viability dye for flow cytometry staining |
LSM | mpbio | 50494X | PBMCs separation from human blood |
Mouse anti-human CD3 BV711 | BD Biosciences | 563725 | T cell flow cytometry staining |
Mouse anti-human CD56 PE | BD Pharmingen | 555516 | NK flow cytometry staining |
Mouse anti-human NKp46 PE | BD Pharmingen | 557991 | NK flow cytometry staining |
Oligomycin | MilliporeSigma | 75351 | Complex V inhibitor / mitochondrial stress test injector compound |
PBS pH 7.4 | Gibco | 10010-023 | NK cell separation buffer |
Pierce BCA Protein Assay Kit | ThermoFisher Scientific | 23225 | For determination of protein concentration |
RIPA Buffer | Boston BioProducts | BP-115 | Cell lysis |
Rotenone | MilliporeSigma | R8875 | Complex II inhibitor / glycolysis and mitochondrial stress test injector compound |
Seahorse Wave Controller Software | Agilent | Controller for the Seahorse XFe96 Analyzer | |
Seahorse Wave Desktop Software | Agilent | For data analysis | |
Seahorse XF Base Medium | Agilent | 102353-100 | Extracellular Flux assay base medium |
Seahorse XFe96 Analyzer | Agilent | Extracellular Flux Analyzer | |
Seahorse XFe96 FluxPak | Agilent | 102416-100 | Includes 20 XF96 cell culture plates, 18 XFe96 sensor cartridges, loading guides for transferring compounds to the assay cartridge, and 1 bottle of calibrant solution (500 ml). |
Sodium bicarbonate | MilliporeSigma | S5761 | To prepare the Cell-Tak solution |
Sodium pyruvate (100 mM) | ThermoFisher Scientific | 11360-070 | Component of mitochondrial stress test medium |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved