A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
In this study, we present a protocol for the differentiation of neural stem and progenitor cells (NPCs) solely induced by direct current (DC) pulse stimulation in a microfluidic system.
Physiological electric fields (EF) play vital roles in cell migration, differentiation, division, and death. This paper describes a microfluidic cell culture system that was used for a long-term cell differentiation study using microscopy. The microfluidic system consists of the following major components: an optically transparent electrotactic chip, a transparent indium-tin-oxide (ITO) heater, a culture media-filling pump, an electrical power supply, a high-frequency power amplifier, an EF multiplexer, a programmable X-Y-Z motorized stage, and an inverted phase-contrast microscope equipped with a digital camera. The microfluidic system is beneficial in simplifying the overall experimental setup and, in turn, the reagent and sample consumption. This work involves the differentiation of neural stem and progenitor cells (NPCs) induced by direct current (DC) pulse stimulation. In the stem cell maintenance medium, the mouse NPCs (mNPCs) differentiated into neurons, astrocytes, and oligodendrocytes after the DC pulse stimulation. The results suggest that simple DC pulse treatment could control the fate of mNPCs and could be used to develop therapeutic strategies for nervous system disorders. The system can be used for cell culture in multiple channels, for long-term EF stimulation, for cell morphological observation, and for automatic time-lapse image acquisition. This microfluidic system not only shortens the required experimental time, but also increases the accuracy of control on the microenvironment.
Neural precursor cells (NPCs, also known as neural stem and progenitor cells) can be as a promising candidate for neurodegenerative therapeutic strategy1. The undifferentiated NPCs have self-renewal capacity, multi-potency, and proliferative ability2,3. A previous study has reported that the extracellular matrix and molecular mediators regulate differentiation of NPC. The epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) promote NPC proliferation, thus maintaining the undifferentiated state4.
Previous studies have reported that electrical stimulation can regulate cell physiologic activities such as division5, migration6,7,8, differentiation1,9,10, and cell death11. Electric fields (EFs) play vital roles in the development and regeneration of the central nervous system development12,13,14. From 2009 to 2019, this laboratory has investigated cellular responses to the application of EF in the microfluidic system1,6,7,8,15,16,17. A multichannel, optically transparent, electrotactic (MOE) chip was designed to be suitable for immunofluorescence staining for confocal microscopy. The chip had high optical transparency and good durability and allowed the simultaneous conduct of three independent stimulation experiments and several immunostained conditions in a single study. The microfluidic system is beneficial in simplifying the overall experimental setup and, in turn, the reagent and sample consumption. This paper describes the development of a microfluidic cell culture system that was used for a long-term cell differentiation study.
1. Design and fabrication of the MOE chip
2. Coating poly-L-lysine (PLL) on the substrate in the cell culture regions
3. Preparation of the salt bridge network
4. Preparation of mNPCs
5. Setup of the microfluidic system for DC pulse stimulation (Figure 6)
6. Immunofluorescence assays of mNPCs after pulsed DC stimulation
NOTE: In this step, all reagent is pumped via the medium inlet using a syringe pump.
7. Image analysis and data processing
The detailed configuration of the MOE chip is shown in Figure 1. The microfluidic chip provides a beneficial approach for reducing the experimental setup size, sample volume, and reagent volume. The MOE chip was designed to perform three independent EF stimulation experiments and several immunostaining conditions simultaneously in a single study (Figure 3). In addition, the MOE chip, which has a high optical transparency is suita...
During the fabrication of the MOE chip, the adaptors are attached to the Layer 1 of the MOE chip with fast-acting cyanoacrylate glue. The glue is applied to 4 corners of the adaptors, and then pressure is applied evenly over the adaptors. Excess amount of glue must be avoided to ensure complete polymerization of the glue. Moreover, the completed MOE chip assembly is incubated in a vacuum chamber. This step helps to remove the bubbles between the PMMA layer, the double-sided tape, and the cover glass.
The authors have nothing to disclose.
The authors thank Professor Tang K. Tang, Institute of Biomedical Sciences, Academia Sinica, for his assistance in providing mouse neural stem and progenitor cells (mNPCs). The authors also thank Professor Tang K. Tang and Ms. Ying-Shan Lee, for their valuable discussion on the differentiation of mNPCs.
Name | Company | Catalog Number | Comments |
1 mm PMMA substrates (Layers 1-3) | BHT | K2R20 | Polymethyl methacrylate (PMMA), http://www.bothharvest.com/zh-tw/product-421076/Optical-PMMA-Non-Coated-BHT-K2Rxx-xx=-thickness-choices.html |
15 mL plastic tube | Protech Technology Enterprise Co., Ltd | CT-15-PL-TW | Conical bottomed tube with cap, assembled, presterilized |
3 mL syringe | TERUMO | DVR-3413 | 3 mL oral syringes, without needle |
3 mm optical grade PMMA (Layer 5) | CHI MEI Corporation | ACRYPOLY PMMA Sheet | Optical grade PMMA |
3-way stopcock | NIPRO | NCN-3L | Sterile disposable 3-way stopcock |
5 mL syringe | TERUMO | DVR-3410 | 5 mL oral syringes, without needle |
Adaptor | Dong Zhong Co., Ltd. | Customized | PMMA adaptor |
Agarose | Sigma-Aldrich | A9414 | Agarose, low gelling temperature |
Amplifier | A.A. Lab Systems Ltd | A-304 | High voltage amplifier |
AutoCAD software | Autodesk | Educational Version | Drafting |
B-27 supplement | Gibco | 12587-010 | B-27 supplement (50x), minus vitamin A |
Basic fibroblast growth factor (bFGF) | Peprotech | AF-100-18B | Also called recombinant human FGF-basic |
Black rubber bung | TERUMO | DVR-3413 | From 3 mL oral syringes, without needle |
Bovine serum albumin (BSA) | Sigma-Aldrich | B4287 | Blocking reagent |
Centrifuge | HSIANGTAI | CV2060 | Centrifuge |
CO2 laser scriber | Laser Tools and Technics Corp. | ILS-II | Purchased from http://www.lttcorp.com/index.htm |
Cone connector | IDEX Health & Science | F-120X | One-piece fingertight 10-32 coned, for 1/16" OD natural |
Cone-Luer adaptor | IDEX Health & Science | P-659 | Luer Adapter 10-32 Female to Female Luer, PEEK |
Confocal fluorescence microscope | Leica Microsystems | TCS SP5 | Leica TCS SP5 user manual, http://www3.unifr.ch/bioimage/wp-content/uploads/2013/10/User-Manual_TCS_SP5_V02_EN.pdf |
Digital camera | OLYMPUS | E-330 | Automatic time-lapse image acquisition |
Digital oscilloscope | Tektronix | TDS2024 | Measure voltage or current signals over time in an electronic circuit or component to display amplitude and frequency. |
Double-sided tape | 3M | PET 8018 | Purchased from http://en.thd.com.tw/ |
Dulbecco’s modified Eagle’s medium/Ham's nutrient mixture F-12 (DMEM/F12) | Gibco | 12400024 | DMEM/F-12, powder, HEPES |
Dulbecco's phosphate-buffered saline (DPBS) | Gibco | 21600010 | DPBS, powder, no calcium, no magnesium |
EF multiplexer | Asiatic Sky Co., Ltd. | Customized | Monitor and control the electric current in individual channels |
Epidermal growth factor (EGF) | Peprotech | AF-100-15 | Also called recombinant human EGF |
Fast-acting cyanoacrylate glue | 3M | 7004T | Strength instant adhesive (liquid) |
Flat bottom connector | IDEX Health & Science | P-206 | Flangeless male nut Delrin, 1/4-28 flat-bottom, for 1/16" OD blue |
Function generator | Agilent Technologies | 33120A | High-performance 15 MHz synthesized function generator with built-in arbitrary waveform capability |
Goat anti-mouse IgG H&L (Alexa Fluor 488) | Abcam | ab150117 | Goat anti-mouse IgG H&L (Alexa Fluor 488) preadsorbed |
Goat anti-rabbit IgG H&L (Alexa Fluor 555) | Abcam | ab150086 | Goat polyclonal secondary antibody to rabbit IgG - H&L (Alexa Fluor 555), preadsorbed |
Hoechst 33342 | Invitrogen | H3570 | Nuclear staining |
ImageJ software | National Institutes of Health | 1.48v | Analyze the fluorescent images |
Indium–tin–oxide (ITO) glass | Merck | 300739 | For ITO heater |
Inverted phase contrast microscope | OLYMPUS | CKX41 | For cell morphology observation |
K-type thermocouple | Tecpel | TPK-02A | Temperature thermocouples |
Luer adapter | IDEX Health & Science | P618-01 | Luer adapter female Luer to 1/4-28 male polypropylene |
Luer lock syringe | TERUMO | DVR-3413 | For agar salt bridges |
Mouse anti-GFAP | eBioscience | 14-9892 | Astrocytes marker |
Oligodendrocyte marker O4 antibody | R&D Systems | MAB1326 | Oligodendrocytes marker |
Paraformaldehyde (PFA) | Sigma-Aldrich | P6148 | Fixing agent |
Phosphate buffered saline (PBS) | Basic Life | BL2651 | Washing solution |
Poly-L-Lysine (PLL) | SIGMA | P4707 | Coating solution |
Precision cover glasses thickness No. 1.5H | MARIENFELD | 107242 | https://www.marienfeld-superior.com/precision-cover-glasses-thickness-no-1-5h-tol-5-m.html |
Programmable X-Y-Z motorised stage | Tanlian Inc | Customized | Purchased from http://www.tanlian.tw/ndex.files/motort.htm |
Proportional–integral–derivative (PID) controller | Toho Electronics | TTM-J4-R-AB | Temperature controller |
PTFE tube | Professional Plastics Inc. Taiwan Branch | Outer diameter 1/16 Inches | White translucent PTFE tubing |
Rabbit anti-Tuj1 | Abcam | ab18207 | Neuron marker |
Syringe pump | New Era Systems Inc | NE-1000 | NE-1000 programmable single syringe pump |
TFD4 detergent | FRANKLAB | TFD4 | Cover glass cleaner |
Thermal bonder | Kuan-MIN Tech Co. | Customized | Purchased from http://kmtco.com.tw/ |
Triton X-100 | Sigma-Aldrich | T8787 | Permeabilized solution |
Ultrasonic cleaner | LEO | LEO-300S | Ultrasonic steri-cleaner |
Vacuum chamber | DENG YNG INSTRUMENTS CO., Ltd. | DOV-30 | Vacuum drying oven |
White fingertight plug | IDEX Health & Science | P-316 | 1/4-28 Flat-Bottom, https://www.idex-hs.com/store/fluidics/fluidic-connections/plug-teflonr-pfa-1-4-28-flat-bottom.html |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved