JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Bioengineering

3D Cell-Printed Hypoxic Cancer-on-a-Chip for Recapitulating Pathologic Progression of Solid Cancer

Published: January 5th, 2021

DOI:

10.3791/61945

1Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 2Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 3Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University

* These authors contributed equally

Abstract

Cancer microenvironment has a significant impact on the progression of the disease. In particular, hypoxia is the key driver of cancer survival, invasion, and chemoresistance. Although several in vitro models have been developed to study hypoxia-related cancer pathology, the complex interplay of the cancer microenvironment observed in vivo has not been reproduced yet owing to the lack of precise spatial control. Instead, 3D biofabrication approaches have been proposed to create microphysiological systems for better emulation of cancer ecology and accurate anticancer treatment evaluation. Herein, we propose a 3D cell-printing approach to fabricate a hypoxic cancer-on-a-chip. The hypoxia-inducing components in the chip were determined based on a computer simulation of the oxygen distribution. Cancer-stroma concentric rings were printed using bioinks containing glioblastoma cells and endothelial cells to recapitulate a type of solid cancer. The resulting chip realized central hypoxia and aggravated malignancy in cancer with the formation of representative pathophysiological markers. Overall, the proposed approach for creating a solid-cancer-mimetic microphysiological system is expected to bridge the gap between in vivo and in vitro models for cancer research.

Explore More Videos

Keywords 3D Cell Printing

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved