JoVE Logo
Faculty Resource Center

Sign In

Abstract

Bioengineering

An In vitro System to Gauge the Thrombolytic Efficacy of Histotripsy and a Lytic Drug

Published: June 4th, 2021

DOI:

10.3791/62133

1Department of Radiology, University of Chicago, 2Graduate Program in Medical Physics, University of Chicago

Deep vein thrombosis (DVT) is a global health concern. The primary approach to achieve vessel recanalization for critical obstructions is catheter-directed thrombolytics (CDT). To mitigate caustic side effects and the long treatment time associated with CDT, adjuvant and alternative approaches are under development. One such approach is histotripsy, a focused ultrasound therapy to ablate tissue via bubble cloud nucleation. Pre-clinical studies have demonstrated strong synergy between histotripsy and thrombolytics for clot degradation. This report outlines a benchtop method to assess the efficacy of histotripsy-aided thrombolytic therapy, or lysotripsy.

Clots manufactured from fresh human venous blood were introduced into a flow channel whose dimensions and acousto-mechanical properties mimic an iliofemoral vein. The channel was perfused with plasma and the lytic recombinant tissue-type plasminogen activator. Bubble clouds were generated in the clot with a focused ultrasound source designed for the treatment of femoral venous clots. Motorized positioners were used to translate the source focus along the clot length. At each insonation location, acoustic emissions from the bubble cloud were passively recorded, and beamformed to generate passive cavitation images. Metrics to gauge treatment efficacy included clot mass loss (overall treatment efficacy), and the concentrations of D-dimer (fibrinolysis) and hemoglobin (hemolysis) in the perfusate. There are limitations to this in vitro design, including lack of means to assess in vivo side effects or dynamic changes in flow rate as the clot lyses. Overall, the setup provides an effective method to assess the efficacy of histotripsy-based strategies to treat DVT.

Tags

AI assisted Thrombolysis

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved