A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol provides detailed guidance for the initial and continued generational allotransplantation of Drosophila tumors into the abdomen of adult hosts for studying various aspects of neoplasia. Using an autoinjector apparatus, researchers can achieve improved efficiency and tumor yields compared to those achieved by traditional, manual methods.
This protocol describes the allotransplantation of tumors in Drosophila melanogaster using an auto-nanoliter injection apparatus. With the use of an autoinjector apparatus, trained operators can achieve more efficient and consistent transplantation results compared to those obtained using a manual injector. Here, we cover topics in a chronological fashion: from the crossing of Drosophila lines, to the induction and dissection of the primary tumor, transplantation of the primary tumor into a new adult host and continued generational transplantation of the tumor for extended studies. As a demonstration, here we use Notch intracellular domain (NICD) overexpression induced salivary gland imaginal ring tumors for generational transplantation. These tumors can first be reliably induced in a transition-zone microenvironment within larval salivary gland imaginal rings, then allografted and cultured in vivo to study continued tumor growth, evolution, and metastasis. This allotransplantation method can be useful in potential drug screening programs, as well as for studying tumor-host interactions.
This protocol provides a step-by-step guidance for allotransplantation of Drosophila larval salivary gland (SG) imaginal ring tumors into abdomens of adult hosts using an auto-nanoliter injection apparatus (e.g., Nanoject). This protocol also provides directions for the subsequent re-allografting of tumors into new generations of adult hosts, which provides opportunities for continued longitudinal study of tumor characteristics, such as tumor evolution and tumor-host interactions. The protocol can also be applied toward drug screening experiments.
This method was developed to improve upon the efficacy of performing tumor allotransp....
1. Preparation of SG imaginal ring tumor
Here, we carried out generational allotransplantation of SG imaginal ring tumors using the nanoliter injection autoinjector apparatus and conducted subsequent tumor live-imaging with a confocal laser scanning microscope, which allowed for a deeper dive into topics of tumor growth, tumor cell migration, and tumor-host interactions. When mounting flies, glue them to a microscope slide and restrain them via a polydimethylsiloxane (PDMS) block11.
Figure.......
Tumor allotransplantation can help researchers address certain problems that arise during Drosophila tumor growth and progression. One such challenge is the circumvention of premature deaths of tumor-bearing larvae or adults during primary tumor culture12. In this context, continued tumor allotransplantation allows tumors to grow indefinitely, which facilitates longitudinal studies of tumor growth, metastasis, and evolution. Tumor allotransplantation is also useful for assessing various a.......
There are no conflicts of interest to declare among the authors.
We thank former lab members Dr. Sheng-An Yang and Mr. Juan-Martin Portilla for their contribution in developing this protocol. We are grateful for Dr. Yan Song's lab at Peking University School of Life Sciences for sharing their protocol on manual allotransplantation. We also thank Mr. Calder Ellsworth and Mr. Everest Shapiro for critical reading of the manuscript.
WMD received funding (GM072562, CA224381, CA227789) for this work from National Institute of Health (https://www.nih.gov/) and funding (IOS-155790) from the National Science Foundation (htps://nsf.gov/). The funders had no role in study design, data collection and a....
Name | Company | Catalog Number | Comments |
Confocal Laser Scanning Microscope | Zeiss | LSM 980 | Also known as "Zeiss LSM 980" |
Cornmeal Fly Food | Bloomington Drosophila Stock Center | N/A | Also known as "BDSC Standard Cornmeal Food" |
Dissection Needle (30Gx1/2) | BD PrecisionGlide | 305106 | |
Dissection Plate | Fisher Scientific | 12-565B | |
Fly Tape | Fisherbrand | 159015A | |
Fluoresence Adapter for Stero Microscope | Electron Microscopy Sciences | SFA-UV | Also known as "NightSea Fluorescence Adapter" |
Fluoresence Microscope | Zeiss | 495015-0001-000 | Also known as "Zeiss Stereo Discovery.V8" |
Forceps | Fine Science Tools | 11251-10 | Also known as "Dumont #5 Forceps" |
Glass Capillary (3.5'') | Drummond | 3-000-203-G/X | |
Glue | Elmer | E305 | Also known as "Elmer Washabale Clear Glue" |
Light Microscope | Zeiss | 435063-9010-100 | Also known as "Zeiss Stemi 305" |
Micropipette Puller | World Precision Instruments | PUL-1000 | Also known as "Four Step Micropipette Puller" |
Nanoject Apparatus | Drummond | 3-000-204 | Also known as "Nanoject II Auto-Nanoliter Injector" |
Schneider's Medium | ThermoFisher | 21720001 | |
Syringe (27G x1/2) | BD PrecisionGlide | 305109 | |
Vial | Fisherbrand | AS507 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved