Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Presented here is a mild 3D printing technique driven by alternating viscous-inertial forces to enable the construction of hydrogel microcarriers. Homemade nozzles offer flexibility, allowing easy replacement for different materials and diameters. Cell binding microcarriers with a diameter of 50-500 µm can be obtained and collected for further culturing.

Abstract

Microcarriers are beads with a diameter of 60-250 µm and a large specific surface area, which are commonly used as carriers for large-scale cell cultures. Microcarrier culture technology has become one of the main techniques in cytological research and is commonly used in the field of large-scale cell expansion. Microcarriers have also been shown to play an increasingly important role in in vitro tissue engineering construction and clinical drug screening. Current methods for preparing microcarriers include microfluidic chips and inkjet printing, which often rely on complex flow channel design, an incompatible two-phase interface, and a fixed nozzle shape. These methods face the challenges of complex nozzle processing, inconvenient nozzle changes, and excessive extrusion forces when applied to multiple bioink. In this study, a 3D printing technique, called alternating viscous-inertial force jetting, was applied to enable the construction of hydrogel microcarriers with a diameter of 100-300 µm. Cells were subsequently seeded on microcarriers to form tissue engineering modules. Compared to existing methods, this method offers a free nozzle tip diameter, flexible nozzle switching, free control of printing parameters, and mild printing conditions for a wide range of bioactive materials.

Introduction

Microcarriers are beads with a diameter of 60-250 µm and a large specific surface area and are commonly used for large-scale culture of cells1,2. Their outer surface provides abundant growth sites for cells, and the interior provides a support structure for spatial proliferation. The spherical structure also provides convenience in monitoring and controlling parameters, including pH, O2, and concentration of nutrients and metabolites. When used in combination with stirred tank bioreactors, microcarriers can achieve higher cell densities in a relatively small volume compared to conventional cult....

Protocol

1. Cell culture

  1. Supplement high-glucose Dulbecco's modified Minimum Essential Medium (H-DMEM) with 10% fetal bovine serum (FBS), 1% nonessential amino acid solution (NEAA), 1% penicillin G and streptomycin, and 1% Glutamine supplement as culture media for A549 cells.
  2. Culture A549 cells in a CO2 incubator at 37 °C and with 5% CO2
  3. Dissociate cells for subculture using trypsin at approximately 80% confluence.
    1. Use 3 mL of trypsin to treat the cells in.......

Representative Results

Printheads of varied convergence rates and diameters were fabricated to achieve the printing of multiple types of materials. The nozzles obtained with increasing pull strength are shown in Figure 1B. The nozzles were divided into three areas: reservoir (III), contraction (II), and printhead (I). The reservoir was the unprocessed part of the nozzle, in which the liquid provided static pressure and bioink input for printing. The contraction area was the main part for generating downward drivin.......

Discussion

The protocol described here provides instructions for the preparation of multi-types of hydrogel microcarriers and subsequent cell seeding. Compared to microfluidic chip and inkjet printing methods, AVIFJ approach to constructing microcarriers offers greater flexibility and biocompatibility. An independent nozzle enables a wide range of lightweight nozzles, including glass micropipettes, to be used in these printing systems. The highly controllable processing enables parameters including the volume of the reservoir, the .......

Acknowledgements

This work was supported by the Beijing Natural Science Foundation (3212007), Tsinghua University Initiative Scientific Research Program (20197050024), Tsinghua University Spring Breeze Fund (20201080760), the National Natural Science Foundation of China (51805294), National Key Research and Development Program of China (2018YFA0703004), and the 111 Project (B17026).

....

Materials

NameCompanyCatalog NumberComments
A549 cellsATCCCCL-185Human non-small cell lung cancer cell line
Bright field microscopeOlympusDP70
Confocal microscopeNikonTI-FL
Fetal bovine serum, FBSBI04-001-1ACS
GelatinSIGMAG1890
Glass micropipettessutter instrumentb150-110-10
GlutaMAXGIBCO35050-061
H-DMEMGIBCO11960-044Dulbecco's modified eagle medium
Horseradish peroxidase powderSIGMAP6782
Hydrophobic agent3MPN7026Follow the manufacturer's instructions and use after dilution
Micro-forge devicenarishigeMF-900
Non-essential amino acids, NEAAGIBCO11140-050non-essential amino acids
Penicillin G and streptomycinGIBCO15140-122
Petri dishSIGMAP5731-500EA
Pullersutter instrumentP-1000
Sodium alginateSIGMAA0682
TrypsinGIBCO25200-056
Type I collagen solution from rat tailSIGMAC3867

References

  1. Chen, A. K., Reuveny, S., Oh, S. K. W. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: Achievements and future direction. Biotechnol Advances. 31, 1032-1046 (2013).
  2. Li, B., et al.

Explore More Articles

3D PrintingHydrogel MicrocarriersAlternating Viscous inertial Force JettingBioprintingIn Vitro Cell ExpansionFunctional Microtissue ConstructionMicrocarrier PreparationSodium AlginateCrosslinkingCell EncapsulationA549 CellsCell Tracker Dye

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved