JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Preparation of Expanded Chitin Foams and their Use in the Removal of Aqueous Copper

Published: February 27th, 2021



1Applied Surface Science Laboratory, Montana Technological University, 2Department of Metallurgy and Materials Science, Montana Technological University, 3Department of Environmental Engineering, Montana Technological University, 4Department of Chemistry and Geochemistry, Montana Technological University, 5Department of Mechanical Engineering, Montana Technological University

This study describes a method to expand chitin into a foam by chemical techniques that require no specialized equipment.

Chitin is an underexploited, naturally abundant, mechanically robust, and chemically resistant biopolymer. These qualities are desirable in an adsorbent, but chitin lacks the necessary specific surface area, and its modification involves specialized techniques and equipment. Herein is described a novel chemical procedure for expanding chitin flakes, derived from shrimp shell waste, into foams with higher surface area. The process relies on the evolution of H2 gas from the reaction of water with NaH trapped in a chitin gel. The preparation method requires no specialized equipment. Powder X-ray diffraction and N2-physisorption indicate that the crystallite size decreases from 6.6 nm to 4.4 nm and the specific surface area increases from 12.6 ± 2.1 m2/g to 73.9 ± 0.2 m2/g. However, infrared spectroscopy and thermogravimetric analysis indicate that the process does not change the chemical identity of the chitin. The specific Cu adsorption capacity of the expanded chitin increases in proportion to specific surface area from 13.8 ± 2.9 mg/g to 73.1 ± 2.0 mg/g. However, the Cu adsorption capacity as a surface density remains relatively constant at an average of 10.1 ± 0.8 atom/nm2, which again suggests no change in the chemical identity of the chitin. This method offers the means to transform chitin into a higher surface area material without sacrificing its desirable properties. Although the chitin foam is described here as an adsorbent, it can be envisioned as a catalyst support, thermal insulator, and structural material.

Chitin is a mechanically robust and chemically inert biopolymer, second only to cellulose in natural abundance1. It is the major component in the exoskeleton of arthropods and in the cell walls of fungi and yeast2. Chitin is similar to cellulose, but with one hydroxyl group of each monomer replaced with an acetyl amine group (Figure 1A,B). This difference increases the strength of hydrogen bonding between adjacent polymer chains and gives chitin its characteristic structural resilience and chemical inertness2,3. Due ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Preparation of expanded chitin

  1. Prepare a 250 mL solution of 5 wt% LiCl in dimethylacetamide (DMAc)
    CAUTION: The solvent DMAc is a combustible irritant that may damage fertility and cause birth defects. Handle DMAc in a fume hood using chemical resistant gloves and goggles to avoid contact with skin and eyes.
    1. Add 15 g of LiCl and 285 g (268 mL) of DMAc into a 500 mL Erlenmeyer flask with, then place a 50 mm Polytetrafluoroethylene (PTFE)-lined magnetic stir bar.
    2. Cap the flask w.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Expanded chitin shows the same morphology regardless of the drying method. Figure 3 shows images of neat chitin flakes (Figure 3A1), oven-dried expanded chitin (Figure 3B1), and lyophilized expanded chitin (Figure 3C3). While the neat flakes have the appearance of coarse sand, the expanded chitin foam has the appearance of a kernel of popped corn. Scanning electron micrographs show a similar ch.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The proposed method for chitin foam fabrication allows for the production of such foams without the need for specialized equipment or techniques. Production of the chitin foam relies on the suspension of sodium hydride within a chitin sol-gel. Contact with water from the atmosphere induces gelling of the chitin matrix and evolution of hydrogen gas by decomposition of the sodium hydride. Therefore, the critical steps of the preparation are (1) formation of the sol-gel, (2) introduction of the sodium hydride in anhydrous c.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The research was sponsored by the Combat Capabilities Development Command Army Research Laboratory (Cooperative Agreement Number W911NF-15-2-0020). Any opinions, findings and conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Army Research Lab.

We thank the Center for Advanced Materials Processing (CAMP) at Montana Technological University for the use of some of the specialized equipment required in this study. We also thank Gary Wyss, Nancy Oyer, Rick LaDouceur, John Kirtley, and Katherine Zodrow for the technical assistance and helpful discussions.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Ammonium bicarbonate Sigma-Aldrich 9830 NH4HCO3, ≥99.5 %
Chitin Sigma-Aldrich C7170 Pandalus borealis, practical grade
Colorimeter Hanna Instruments HI83399-01 Photometer for wastewater analysis
Copper High Range Checker Hanna Instruments HI702 Bicinchoninate colorimetric titration
Copper nitrate hydrate  Sigma-Aldrich 223395 Cu(NO3)2 · 2.5 H2O, 98 %
Dimethylacetamide (DMAc) Sigma-Aldrich 271012 Anhydrous, 99.8 %
IR Spectrophotometer Thermo Nicolet Nexus 670 Fitted with an ATR cell
Lithium chloride Sigma-Aldrich 310468 LiCl, ≥99 %
N2 Physisorption Apparatus Micromeritics Tristar II
Nitric acid BDH BDH7208-1 HNO3, 0.1 N
Scanning electron microscope Zeiss LEO 1430 VP 15 kV, secondary electron detector, 29-31 mm working distance
Sodium hydride Sigma-Aldrich 223441 NaH, packed in mineral oil, 90 %
Thermogravimetric analyzer TA Instruments Q500 100 ml/min N2, 10 °C/min to 800 °C
Water Purification System Millipore Milli-Q Type A water (18 MΩ)
X-Ray Diffractometer Rigaku Ultima IV Cu K-α radiation, 8.04 keV

  1. Rinaudo, M. Chitin and chitosan: Properties and applications. Progress in Polymer Science. 31 (7), 603-632 (2006).
  2. Percot, A., Viton, C., Domard, A. Optimization of chitin extraction from shrimp shells. Biomacromolecules. 4 (1), 12-18 (2003).
  3. Austin, P. R. Chitin solvents and solubility parameters. Chitin, Chitosan, and Related Enzymes. , 227-237 (1984).
  4. Deepthi, S., Venkatesan, J., Kim, S. K., Bumgardner, J. D., Jayakumar, R. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules. 93, 1338-1353 (2016).
  5. Tao, F., et al. Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydrate Polymers. 230, 115658 (2020).
  6. Zhao, L., et al. Regulation of the morphological and physical properties of a soft tissue scaffold by manipulating DD and DS of O-carboxymethyl chitin. ACS Applied Bio Materials. 3 (9), 6187-6195 (2020).
  7. Duan, Y., Freyburger, A., Kunz, W., Zollfrank, C. Cellulose and chitin composite materials from an ionic liquid and a green co-solvent. Carbohydrate Polymers. 192, 159-165 (2018).
  8. Kadokawa, J., Takegawa, A., Mine, S., Prasad, K. Preparation of chitin nanowhiskers using an ionic liquid and their composite materials with poly(vinyl alcohol). Carbohydrate Polymers. 84 (4), 1408-1412 (2011).
  9. Chen, Z., Wang, J., Qi, H. J., Wang, T., Naguib, H. E. Green and sustainable layered chitin-vitrimer composite with enhanced modulus, reprocessability, and smart actuator function. ACS Sustainable Chemistry and Engineering. 8 (40), 15168-15178 (2020).
  10. Zhang, Z., Lucia, L. A. Chitin-clay composite gels with enhanced thermal stability prepared in a green and facile approach. Journal of Materials Science. 56 (4), 3600-3611 (2021).
  11. Ahmed, M. J., Hameed, B. H., Hummadi, E. H. Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants. Carbohydrate Polymers. 247, 116690 (2020).
  12. Matsuoka, A., et al. Hydration of nitriles to amides by a chitin-supported ruthenium catalyst. RSC Advances. 5 (16), 12152-12160 (2015).
  13. Wang, Y., Li, Y., Liu, S., Li, B. Fabrication of chitin microspheres and their multipurpose application as catalyst support and adsorbent. Carbohydrate Polymers. 120, 53-59 (2015).
  14. Anastopoulos, I., Bhatnagar, A., Bikiaris, D., Kyzas, G. Chitin Adsorbents for Toxic Metals: A Review. International Journal of Molecular Sciences. 18 (1), 114 (2017).
  15. Habiba, U., Afifi, A. M., Salleh, A., Ang, B. C. Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. Journal of Hazardous Materials. 322, 182-194 (2017).
  16. Kim, U. J., et al. Protein adsorption of dialdehyde cellulose-crosslinked chitosan with high amino group contents. Carbohydrate Polymers. 163, 34-42 (2017).
  17. He, Y., et al. Fabrication of PVA nanofibers grafted with octaamino-POSS and their application in heavy metal adsorption. Journal of Polymers and the Environment. , (2020).
  18. Tian, H., et al. Electrospinning of polyvinyl alcohol into crosslinked nanofibers: An approach to fabricate functional adsorbent for heavy metals. Journal of Hazardous Materials. 378, (2019).
  19. Meille, V. Review on methods to deposit catalysts on structured surfaces. Applied Catalysis A: General. 315, 1-17 (2006).
  20. Dotto, G. L., Cunha, J. M., Calgaro, C. O., Tanabe, E. H., Bertuol, D. A. Surface modification of chitin using ultrasound-assisted and supercritical CO2 technologies for cobalt adsorption. Journal of Hazardous Materials. 295, 29-36 (2015).
  21. Phongying, S., Aiba, S., Chirachanchai, S. Direct chitosan nanoscaffold formation via chitin whiskers. Polymer. 48 (1), 393-400 (2007).
  22. Tan, T. S., Chin, H. Y., Tsai, M. L., Liu, C. L. Structural alterations, pore generation, and deacetylation of α- and β-chitin submitted to steam explosion. Carbohydrate Polymers. 122, 321-328 (2015).
  23. Chang, F. S., Chin, H. Y., Tsai, M. L. Preparation of chitin with puffing pretreatment. Research on Chemical Intermediates. 44 (8), 4939-4955 (2018).
  24. Goodrich, J. D., Winter, W. T. α-Chitin Nanocrystals prepared from shrimp shells and their specific surface area measurement. Biomacromolecules. 8 (1), 252-257 (2007).
  25. Rolandi, M., Felts, J. . Naturally sourced chitin foam. , (2020).
  26. McDermott, S., Hailer, M. K., Lead, J. R. Meconium identifies high levels of metals in newborns from a mining community in the U.S. Science of the Total Environment. 707, 135528 (2020).
  27. Hach Handbook of Water Analysis. Copper, Bicinchoninate Method, Method 8506. Hach Handbook of Water Analysis. , (1979).
  28. Crittenden, J. C., Trusell, R. R., Hand, D. R., Howe, K. J., Tchbanoglous, G. Adsorption. MWH's Water Treatment. , 1117 (2012).
  29. Focher, B., Beltrame, P. L., Naggi, A., Torri, G. Alkaline N-deacetylation of chitin enhanced by flash treatments. Reaction kinetics and structure modifications. Carbohydrate Polymers. 12 (4), 405-418 (1990).
  30. Scherrer, P. Determination of the size and the internal structure of colloidal particles by means of X-rays. News from the Society of Sciences in Göttingen, Mathematical- Physical Class. 2, 98-100 (1918).
  31. Brunauer, S., Emmett, P. H., Teller, E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society. 60 (2), 309-319 (1938).
  32. Sing, K. S. W. Adsorption methods for the characterization of porous materials. Advances in Colloid and Interface Science. 76-77, 3-11 (1998).
  33. Rouquerol, J., Llewellyn, P., Rouquerol, F. Is the bet equation applicable to microporous adsorbents. Studies in Surface Science and Catalysis. 160, 49-56 (2007).
  34. Vorokh, A. S. Scherrer formula: estimation of error in determining small nanoparticle size. Nanosystems: Physics, Chemistry, Mathematics. , 364-369 (2018).
  35. Labidi, A., Salaberria, A. M., Fernandes, S. C. M., Labidi, J., Abderrabba, M. Adsorption of copper on chitin-based materials: Kinetic and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers. 65, 140-148 (2016).
  36. Tian, M., Zhao, T. Q., Chin, P. L., Liu, B. S., Cheung, A. S. -. C. Methane and propane co-conversion study over zinc, molybdenum and gallium modified HZSM-5 catalysts using time-of-flight mass-spectrometry. Chemical Physics Letters. 592, 36-40 (2014).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved