JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Engineering

Ion-Exchange Membranes for the Fabrication of Reverse Electrodialysis Device

Published: July 20th, 2021

DOI:

10.3791/62309

1Department of Mechanical Engineering, Energy Engineering Lab, Sogang University

We demonstrate the fabrication of a reverse electrodialysis device using a cation-exchange membrane (CEM) and anion-exchange membrane (AEM) for power generation.

Reverse electrodialysis (RED) is an effective way to generate power by mixing two different salt concentrations in water using cation-exchange membranes (CEM) and anion-exchange membranes (AEM). The RED stack is composed of an alternating arrangement of the cation-exchange membrane and anion-exchange membrane. The RED device acts as a potential candidate for fulfilling the universal demand for future energy crises. Here, in this article, we demonstrate a procedure to fabricate a reverse electrodialysis device using laboratory-scale CEM and AEM for power production. The active area of the ion-exchange membrane is 49 cm2. In this article, we provide a step-by-step procedure for synthesizing the membrane, followed by the stack's assembly and power measurement. The measurement conditions and net power output calculation have also been explained. Furthermore, we describe the fundamental parameters that are taken into consideration for obtaining a reliable outcome. We also provide a theoretical parameter that affects the overall cell performance relating to the membrane and the feed solution. In short, this experiment describes how to assemble and measure RED cells on the same platform. It also contains the working principle and calculation used for estimating the net power output of the RED stack using CEM and AEM membranes.

Energy harvesting from natural resources is an economical method that is environmentally friendly, thereby making our planet green and clean. Several processes have been proposed until now to extract energy, but reverse electrodialysis (RED) has an enormous potential to overcome the energy crisis issue1. Power production from Reverse electrodialysis is a technological breakthrough for the decarbonization of global energy. As the name suggests, RED is a reverse process, where the alternate cell compartment is filled with the high-concentrated salt solution and low-concentrated salt solution2. The chemical potential genera....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Experimental requirement

  1. Purchase ion-exchange ionomer polymer, E-550 sulfonated-PEEK polymer fiber to prepare CEM and FAA-3 to prepare AEM. Ensure that all ionomer polymers are stored in a clean, dry, and dust-free environment before use.
  2. Use high purity (>99%) solvents, including N-Methyl-2- pyrrolidone with molecular weight 99.13 g mol-1 and N, N-Dimethylacetamide with molecular weight 87.12, for preparing homogeneous ionomer solution. Ensure all analytical grade chemicals and s.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Net power output
RED cell generally generates electrical energy from the salinity gradient of the salt solution, i.e., ions' movement in the opposite direction through the membrane. To assemble the RED stack correctly, one needs to align all the layers, including electrodes, gaskets, membranes, and spacers in the stack carefully, as demonstrated in the schematic diagram in Figure 4 and Figure 5. If the stack is not perfectly aligned, t.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The RED's working principle is mainly dominated by the membrane's physicochemical properties, which is a crucial part of the RED system, as illustrated in Figure 3. Here, we describe the fundamental characteristics of the membrane for delivering a high-performance RED system. Membrane's specific ion permeability makes it pass one type of ions through their polymer nanochannel. As the name suggests, CEM can pass cation from one side to another and restricts anion, whereas AEM can .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. NRF-2017R1A2A2A05001329). The authors of the manuscript are grateful to the Sogang University, Seoul, Republic of Korea.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
AEM based membrane Fumion P1810-194 Ionomer
CEM based membrane Fumion E550 Ionomer
Digital torque wrench Torqueworld WP2-030-09000251 wrench
Labview software Natiaonal Instrument - Software
Laptop LG - PC
Magnetic stirrer Lab Companion - MS-17BB
N, N-Dimethylacetamide Sigma aldrich 271012 Chemical
N-Methyl-2- pyrrolidone Daejung 872-50-4 Chemical
Peristaltic pump EMS tech Inc - EMP 2000W
Potassium hexacyanoferrate(II) trihydrate Sigma aldrich P3289 Chemical
Potassium hexacyanoferrate(III) Sigma aldrich 244023 Chemical
Pressure Gauge Swagelok - Guage
Reverse electrodialysis setup fabricated in lab - Device
RO system pure water KOTITI - Water
Rotary evaporator Hitachi YEFO-KTPM Induction motor
Sodium Chloride Sigma aldrich S9888 Chemical
Sodium Hydroxide Merk 1310-73-2 Chemical
Source meter Keithley - 2410
Spacer Nitex, SEFAR 06-250/34 Spacer
Sulfuric acid Daejung 7664-93-9 Chemical
Tube Masterflex tube 96410-25 Rubber tube

  1. Dlugolecki, P., Gambier, A., Nijmeijer, K., Wessling, M. Practical potential of reverse electrodialysis as process for sustainable energy generation. Environmental Science & Technology. 43, 6888-6894 (2009).
  2. Kim, D., Kwon, K., Kim, D. H., Li, L. . Energy Generation Using Reverse Electrodialysis: Principles, Implementation, and Applications. , (2019).
  3. Mei, Y., Tang, C. Y. Recent developments and future perspectives of reverse electrodialysis technology: A review. Desalination. 425, 156-174 (2018).
  4. Yip, N. Y., Brogioli, D., Hamelers, H. V. M., Nijmeijer, K. Salinity gradients for sustainable energy: primer, progress, and prospects. Environmental Science & Technology. 50, 12072-12094 (2016).
  5. Li, W., et al. A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management. Applied Energy. 104, 592-602 (2013).
  6. Brauns, E. Salinity gradient power by reverse electrodialysis: effect of model parameters on electrical power output. Desalination. 237, 378-391 (2009).
  7. Cusick, R. D., Kim, Y., Logan, B. E. Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells. Science. 335, 1474-1477 (2012).
  8. Kim, D. H., Park, B. H., Kwon, K., Li, L., Kim, D. Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery. Applied Energy. 189, 201-210 (2017).
  9. Hong, J. G., et al. Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review. Journal of Membrane Science. 486, 71-88 (2015).
  10. Choi, S. -. Y., et al. Controlling fuel crossover in open electrochemical cells by tuning the water nanochannel for power generation. ACS Sustainable Chemistry & Engineering. 8, 8613-8623 (2020).
  11. Shah, S. A., et al. Modified single-wall carbon nanotube for reducing fouling in perfluorinated membrane-based reverse electrodialysis. International Journal of Hydrogen Energy. 45, 30703-30719 (2020).
  12. Kwon, K., Han, J., Park, B. H., Shin, Y., Kim, D. Brine recovery using reverse electrodialysis in membrane-based desalination processes. Desalination. 362, 1-10 (2015).
  13. Kwon, K., Park, B. H., Kim, D. H., Kim, D. Parametric study of reverse electrodialysis using ammonium bicarbonate solution for low-grade waste heat recovery. Energy Conversion and Management. 103, 104-110 (2015).
  14. Hatzell, M. C., Ivanov, I., Cusick, R. D., Zhu, X., Logan, B. E. Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems. Physical Chemistry Chemical Physics. 16, 1632-1638 (2014).
  15. Zhu, X. P., He, W. H., Logan, B. E. Reducing pumping energy by using different flow rates of high and low concentration solutions in reverse electrodialysis cells. Journal of Membrane Science. 486, 215-221 (2015).
  16. Vermaas, D. A., Saakes, M., Nijmeijer, K. Doubled power density from salinity gradients at reduced intermembrane distance. Environmental Science & Technology. 45, 7089-7095 (2011).
  17. Veerman, J., Saakes, M., Metz, S. J., Harmsen, G. J. Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water. Journal of Membrane Science. 327, 136-144 (2009).
  18. Veerman, J., Saakes, M., Metz, S. J., Harmsen, G. J. Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant. Environmental Science & Technology. 44, 9207-9212 (2010).
  19. Batchelor, C. K., Batchelor, G. K. . An Introduction to Fluid Dynamics. , (2000).
  20. Schock, G., Miquel, A. Mass transfer and pressure loss in spiral wound modules. Desalination. 64, 339-352 (1987).
  21. Da Costa, A. R., Fane, A. G., Wiley, D. E. Spacer characterization and pressure drop modelling in spacer-filled channels for ultrafiltration. Journal of Membrane Science. 87, 79-98 (1994).
  22. Vermaas, D. A., Veerman, J., Saakes, M., Nijmeijer, K. Influence of multivalent ions on renewable energy generation in reverse electrodialysis. Energy & Environmental Science. 7, 1434-1445 (2014).
  23. Vermaas, D. A., Saakes, M., Nijmeijer, K. Enhanced mixing in the diffusive boundary layer for energy generation in reverse electrodialysis. Journal of Membrane Science. 453, 312-319 (2014).
  24. Moreno, J., Grasman, S., van Engelen, R., Nijmeijer, K. Upscaling reverse electrodialysis. Environmental Science & Technology. 52, 10856-10863 (2018).
  25. Sarkar, S., SenGupta, A. K., Prakash, P. The donnan membrane principle: opportunities for sustainable engineered processes and materials. Environmental Science & Technology. 44, 1161-1166 (2010).
  26. Kim, H. -. K., et al. High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high-open-area spacer. Journal of Materials Chemistry A. 3, 16302-16306 (2015).
  27. Długołęcki, P., Nymeijer, K., Metz, S., Wessling, M. Current status of ion exchange membranes for power generation from salinity gradients. Journal of Membrane Science. 319, 214-222 (2008).
  28. Geise, G. M., Curtis, A. J., Hatzell, M. C., Hickner, M. A., Logan, B. E. Salt concentration differences alter membrane resistance in reverse electrodialysis stacks. Environmental Science & Technology Letters. 1, 36-39 (2014).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved