JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Bioengineering

Size Exclusion Chromatography to Analyze Bacterial Outer Membrane Vesicle Heterogeneity

Published: March 31st, 2021

DOI:

10.3791/62429

1Department of Chemical and Biomolecular Engineering, Lehigh University

Bacterial vesicles play important roles in pathogenesis and have promising biotechnological applications. The heterogeneity of vesicles complicates analysis and use; therefore, a simple, reproducible method to separate varying sizes of vesicles is necessary. Here, we demonstrate the use of size exclusion chromatography to separate heterogeneous vesicles produced by Aggregatibacter actinomycetemcomitans.

The cell wall of Gram-negative bacteria consists of an inner (cytoplasmic) and outer membrane (OM), separated by a thin peptidoglycan layer. Throughout growth, the outer membrane can bleb to form spherical outer membrane vesicles (OMVs). These OMVs are involved in numerous cellular functions including cargo delivery to host cells and communication with bacterial cells. Recently, the therapeutic potential of OMVs has begun to be explored, including their use as vaccines and drug delivery vehicles. Although OMVs are derived from the OM, it has long been appreciated that the lipid and protein cargo of the OMV differs, often significantly, from that of the OM. More recently, evidence that bacteria can release multiple types of OMVs has been discovered, and evidence exists that size can impact the mechanism of their uptake by host cells. However, studies in this area are limited by difficulties in efficiently separating the heterogeneously sized OMVs. Density gradient centrifugation (DGC) has traditionally been used for this purpose; however, this technique is time-consuming and difficult to scale-up. Size exclusion chromatography (SEC), on the other hand, is less cumbersome and lends itself to the necessary future scale-up for therapeutic use of OMVs. Here, we describe a SEC approach that enables reproducible separation of heterogeneously sized vesicles, using as a test case, OMVs produced by Aggregatibacter actinomycetemcomitans, which range in diameter from less than 150 nm to greater than 350 nm. We demonstrate separation of "large" (350 nm) OMVs and "small" (<150 nm) OMVs, verified by dynamic light scattering (DLS). We recommend SEC-based techniques over DGC-based techniques for separation of heterogeneously sized vesicles due to its ease of use, reproducibility (including user-to-user), and possibility for scale-up.

Gram-negative bacteria release vesicles derived from their outer membrane, so-called outer membrane vesicles (OMVs), throughout growth. These OMVs play important roles in cell-to-cell communication, both between bacteria and host as well as between bacterial cells, by carrying a number of important biomolecules, including DNA/RNA, proteins, lipids, and peptidoglycans1,2. In particular, the role of OMVs in bacterial pathogenesis has been extensively studied due to their enrichment in certain virulence factors and toxins3,4,5....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Preparation of buffers

  1. To prepare the ELISA wash buffer, add 3.94 g Tris-base, 8.77 g NaCl, and 1 g bovine serum albumin (BSA) to 1 L of deionized (DI) water. Add 500 µL polysorbate-20. Adjust the pH to 7.2 using HCl or NaOH.
  2. To prepare the blocking buffer, add 3.94 g Tris-base, 8.77 g NaCl, and 10 g BSA. Add 500 µL polysorbate-20 to 1 L of DI water. Adjust the pH to 7.2 using HCl or NaOH.
  3. To prepare the elution buffer (PBS), add 8.01 g NaCl, 2.7 g KCl, 1.42 g Na2HP.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Figure 2 shows representative results from this method. OMVs produced by A. actinomycetemcomitans strain JP2 were first purified from the culture supernatant using ultracentrifugation15. We previously found that this strain produces two populations of OMVs, one with diameters of about 300 nm and one with diameters of about 100 nm15. To separate these OMV populations, we purified the sample using the SEC protocol described above. E.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Here, we have provided a protocol for the simple, fast, and reproducible separation of bacterial OMV subpopulations. Although the technique is relatively straight-forward, there are some steps that must be performed extremely carefully to ensure that efficient separation occurs in the column. First, it is essential that the gel be loaded into the column carefully and slowly to avoid air bubbles. We have observed that leaving the gel at room temperature for several hours before loading the column allows the gel to equilib.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was funded by the National Science Foundation (1554417) and National Institutes of Health (DE027769).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
1-Step Ultra TMB-ELISA Thermo Scientific 34028
Amicon 50 kDa filters Millipore Sigma UFC905024
Bovine Serum Albumin (BSA) Fisher Scientific BP9704-100
ELISA Immuno Plates Thermo Scientific 442404
FM 4-64 Thermo Scientific T13320 1.5 x 50 cm
Glass Econo-Column BioRad 7371552
Infinite 200 Pro Plate Reader Tecan
Potassium Chloride (KCl) Amresco (VWR) 0395-500G
Potassium Phosphate Monobasic Anhydrous (KH2PO4) Amresco (VWR) 0781-500G
Sephacryl S-1000 Superfine GE Healthcare 17-0476-01
Sodium Chloride (NaCl) Fisher Chemical S271-3
Sodium Phosphate Dibasic Anhydrous (Na2HPO4) Amresco (VWR) 0404-500G
Tris Base VWR 0497-1KG
Tween(R) 20 Acros Organics 23336-2500

  1. Kuehn, M. J., Kesty, N. C. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes and Development. 19, 2645-2655 (2005).
  2. Kulp, A., Kuehn, M. J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annual Reviews Microbiology. 64, 163-184 (2010).
  3. Kato, S., Kowashi, Y., Demuth, D. R. Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microbial Pathogenesis. 32 (1), 1-13 (2002).
  4. Nice, J. B., et al. Aggregatibacter actinomycetemcomitans leukotoxin is delivered to host cells in an LFA-1-independent manner when associated with outer membrane vesicles. Toxins. 10 (10), 414 (2018).
  5. Haurat, M. F., et al. Selective sorting of cargo proteins into bacterial membrane vesicles. Journal of Biological Chemistry. 286 (2), 1269-1276 (2011).
  6. Horstman, A. L., Kuehn, M. J. Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. The Journal of Biological Chemistry. 275 (17), 12489-12496 (2000).
  7. Wai, S. N., et al. Vesicle-mediated export and assembly of pore-forming oligomers of the Enterobacterial ClyA cytotoxin. Cell. 115, 25-35 (2003).
  8. Balsalobre, C., et al. Release of the Type I secreted α-haemolysin via outer membrane vesicles from Escherichia coli. Molecular Microbiology. 59 (1), 99-112 (2006).
  9. Donato, G. M., et al. Delivery of Bordetella pertussis adenylate cyclase toxin to target cells via outer membrane vesicles. FEBS Letters. 586, 459-465 (2012).
  10. Kim, Y. R., et al. Outer membrane vesicles of Vibrio vulnificus deliver cytolysin-hemolysin VvhA into epithelial cells to induce cytotoxicity. Biochemical and Biophysical Research Communications. 399, 607-612 (2010).
  11. Maldonado, R., Wei, R., Kachlany, S. C., Kazi, M., Balashova, N. V. Cytotoxic effects of Kingella kingae outer membrane vesicles on human cells. Microbial Pathogenesis. 51 (1-2), 22-30 (2011).
  12. Turner, L., et al. Helicobacter pylori outer membrane vesicle size determines their mechanisms of host cell entry and protein content. Frontiers in Immunology. 9, 1466 (2018).
  13. Zavan, L., Bitto, N. J., Johnston, E. L., Greening, D. W., Kaparakis-Liaskos, M. Helicobacter pylori growth stage determines the size, protein composition, and preferential cargo packaging of outer membrane vesicles. Proteomics. 19 (1-2), 1800209 (2019).
  14. Rompikuntal, P. K., et al. Perinuclear localization of internalized outer membrane vesicles carrying active cytolethal distending toxin from Aggregatibacter actinomycetemcomitans. Infections and Immunity. 80 (1), 31-42 (2012).
  15. Nice, J. B., et al. Aggregatibacter actinomycetemcomitans leukotoxin is delivered to host cells in an LFA-1-independent manner when associated with outer membrane vesicles. Toxins. 10 (10), 414 (2018).
  16. Stevenson, T. C., et al. Immunization with outer membrane vesicles displaying conserved surface polysaccharide antigen elicits broadly antimicrobial antibodies. Proceedings of the National Academy of Sciences. 115 (14), 3106-3115 (2018).
  17. Gujrati, V., et al. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano. 8 (2), 1525-1537 (2014).
  18. Huang, W., et al. Development of novel nanoantibiotics using an outer membrane vesicle-based drug efflux mechanism. Journal of Controlled Release. 317, 1-22 (2020).
  19. Chen, D. J., et al. Delivery of foreign antigens by engineered outer membrane vesicle vaccines. Proceedings of the National Academy of Sciences. 107 (7), 3099-3104 (2010).
  20. Chen, L., et al. Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies. Proceedings of the National Academy of Sciences. 113 (26), 3609-3618 (2016).
  21. Singorenko, P. D., et al. Isolation of membrane vesicles from prokaryotes: A technical and biological comparison reveals heterogeneity. Journal of Extracellular Vesicles. 6 (1), 1324731 (2017).
  22. Zeringer, E., Barta, T., Li, M., Vlassov, A. V. Strategies for isolation of exosomes. Cold Spring Harbor Protocols. 2015 (4), 319-323 (2015).
  23. Benedikter, B. J., et al. Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. Science Reports. 7 (1), 15297 (2017).
  24. Mol, E. A., Goumans, M. J., Doevendans, P. A., Sluijter, J. P. G., Vader, P. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomedicine. 13 (6), 2061-2065 (2017).
  25. Lally, E. T., Golub, E. E., Kieba, I. R. Identification and immunological characterization of the domain of Actinobacillus actinomycetemcomitans leukotoxin that determines its specificity for human target cells. Journal of Biological Chemistry. 269 (49), 31289-31295 (1994).
  26. Chang, E. H., Giaquinto, P., Huang, J., Balashova, N. V., Brown, A. C. Epigallocatechin gallate inhibits leukotoxin release by Aggregatibacter actinomycetemcomitans by promoting association with the bacterial membrane. Molecular Oral Microbiology. 35 (1), 29-39 (2020).
  27. Klimentová, J., Stulík, J. Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria. Microbiological Research. 170, 1-9 (2015).
  28. Dauros Singorenko, P., et al. Isolation of membrane vesicles from prokaryotes: a technical and biological comparison reveals heterogeneity. Journal of Extracellular Vesicles. 6 (1), 1324731 (2017).
  29. Monguió-Tortajada, M., Gálvez-Montón, C., Bayes-Genis, A., Roura, S., Borràs, F. E. Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography. Cellular and Molecular Life Sciences. 76 (12), 2369-2382 (2019).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved