A subscription to JoVE is required to view this content. Sign in or start your free trial.
Techniques for generating a library of short peptides that can activate mast cells via the MRGPRX2 receptor are described. Associated techniques are easy, inexpensive, and can be extended to other cell receptors.
Identifying ligands specific to therapeutically significant cell receptors is crucial for many applications, including the design and development of new therapeutics. Mas related G-protein receptor-X2 (MRGPRX2) is an important receptor that regulates mast cell activation and, thus, directs the general immune response. Numerous ligands for MRGPRX2 have been identified and include endogenous peptides like PAMPs, defensins, LL-37 and other protein fragments (i.e., degraded albumin). Further identification of MRGPRX2 specific ligands requires the screening of a large number of peptides (i.e., peptide library); however, mast cells are difficult and expensive to maintain in vitro and, therefore, not economical to use for screening large numbers of molecules. The present paper demonstrates a method to design, develop, and screen a library of small peptide molecules using MRGPRX2 expressing HEK cells. This cell line is relatively easy and inexpensive to maintain and can be used for in vitro high-throughput analysis. A calcium sensitive Fura-2 fluorescent dye to mark intracellular calcium flux upon activation was used to monitor the activation. The ratio of fluorescence intensity of Fura-2 at 510 nm against excitation wavelengths of 340 and 380 nm was used to calculate calcium concentration. The peptide library used to verify this system was based on the endogenous proadrenomedullin N-terminal 12 (PAMP-12) secretagogue, which is known to bind MRGPRX2 with high specificity and affinity. Subsequent peptides were generated through amino acid truncation and alanine scanning techniques applied to PAMP-12. The method described here is simple and inexpensive yet robust for screening a large library of compounds to identify binding domains and other important parameters that play an important role in receptor activation.
Mast cells are an integral part of the immune system and play a crucial role in both innate and adaptive immune responses. Mast cells are primarily activated either by the binding of an antigen to the immunoglobulin E (IgE) - FcεRI receptor complex, or by the recently discovered mas related G-protein receptor-X2 (MRGPRX2)1. MRGPRX2 activation has been linked to several immune and inflammatory diseases, and hence, it is important to understand the binding mechanism of the receptor to its ligands2. To do so, a library of small peptide molecules was developed and screened against MRGPRX2 receptors that were overexpress....
1. Design and development of peptide library
Table 1 contains the peptide sequences generated through terminal amino acid truncation and alanine scanning. As shown in Table 1, peptide sequence RKKWNKWALSR lacks N-terminal phenylalanine (F) with respect to its parent PAMP-12 and hence is a representative peptide in N-truncated library. Similarly, in FRKKWNKWALS, PAMP-12 C-terminal serine has been removed, representing a C-truncated peptide library derived from PAMP-12. In N+C-truncated peptide library, amino acid from both N and C-t.......
Calcium signaling is central to mast cell degranulation and has been widely used in the study of receptor-ligand interactions, ligand identification, and drug discovery14. MRGPRX2 is a recently discovered mast cell receptor that has been found to play a key role in many inflammatory diseases like itch, asthma, and atopic dermatitis, among others2. Furthermore, several approved drugs have been shown to elicit an inflammatory response through the MRGPRX2 receptor
SR and LDU would like to acknowledge Alberta Innovates Strategic Research Project, NRC, and NSERC-Discovery grant for this project.
....Name | Company | Catalog Number | Comments |
Bovine Serum Albumin | Sigma Aldrich | 5470 | |
Calcium Chloride | Sigma Aldrich | 793939 | |
Corning 96 Well | Sigma Aldrich | CLS3603 | |
Black Polystyrene Microplate | Sigma Aldrich | CLS3603 | |
DMEM | Thermo Fischer | 11995065 | High Glucose |
DMSO | Thermo Fischer | D12345 | Sterile, biological grade |
EGTA | Sigma Aldrich | E3889 | |
Fetal Bovine Serum | Thermo Fischer | 12483-020 | |
Flexstation 3 | Molecular devices | FV06060 | |
Fura-2 AM | Thermo Fischer | F1221 | |
Glucose | Sigma Aldrich | D8270 | |
HEPES buffer | Thermo Fischer | 15630-080 | |
Ionomycin | Sigma Aldrich | I9657 | |
L Glutamine | Thermo Fischer | 25030-081 | |
Pen Strep | Thermo Fischer | 15140122 | |
Peptides | RS Syntehsis | Custom | ≥95% pure; N terminal - acetyl group C terminal - amide group |
Potassium Chloride | Sigma Aldrich | 12636 | |
Sodium Chloride | Sigma Aldrich | S9888 | |
TritonX-100 | DOW Chemical | 166704 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved