A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Immunology and Infection
Identifying ligands specific to therapeutically significant cell receptors is crucial for many applications, including the design and development of new therapeutics. Mas related G-protein receptor-X2 (MRGPRX2) is an important receptor that regulates mast cell activation and, thus, directs the general immune response. Numerous ligands for MRGPRX2 have been identified and include endogenous peptides like PAMPs, defensins, LL-37 and other protein fragments (i.e., degraded albumin). Further identification of MRGPRX2 specific ligands requires the screening of a large number of peptides (i.e., peptide library); however, mast cells are difficult and expensive to maintain in vitro and, therefore, not economical to use for screening large numbers of molecules. The present paper demonstrates a method to design, develop, and screen a library of small peptide molecules using MRGPRX2 expressing HEK cells. This cell line is relatively easy and inexpensive to maintain and can be used for in vitro high-throughput analysis. A calcium sensitive Fura-2 fluorescent dye to mark intracellular calcium flux upon activation was used to monitor the activation. The ratio of fluorescence intensity of Fura-2 at 510 nm against excitation wavelengths of 340 and 380 nm was used to calculate calcium concentration. The peptide library used to verify this system was based on the endogenous proadrenomedullin N-terminal 12 (PAMP-12) secretagogue, which is known to bind MRGPRX2 with high specificity and affinity. Subsequent peptides were generated through amino acid truncation and alanine scanning techniques applied to PAMP-12. The method described here is simple and inexpensive yet robust for screening a large library of compounds to identify binding domains and other important parameters that play an important role in receptor activation.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved