JoVE Logo
Faculty Resource Center

Sign In

Abstract

Cancer Research

Analysis of Liver Microenvironment During Early Progression of Non-Alcoholic Fatty Liver Disease-Associated Hepatocellular Carcinoma in Zebrafish

Published: April 1st, 2021

DOI:

10.3791/62457

1Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 2Department of Medicine (Hepatology), Albert Einstein College of Medicine, 3Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, 4Marion Bessin Liver Research Center, Albert Einstein College of Medicine

Liver cancer is currently the third leading cause of cancer related death worldwide, and Hepatocellular Carcinoma (HCC) accounts for 75-90% of all liver cancer cases. With the introduction of effective treatments to prevent and treat hepatitis B/C, non-alcoholic fatty liver disease (NAFLD), and the more aggressive form know as non-alcoholic steatohepatitis (NASH), are quickly becoming the number one risk factors to develop HCC in modern societies. To better understand the role NASH has on the development of HCC we designed a NASH-associated HCC zebrafish. The optical clarity and genetic tractability of the zebrafish larvae make them an appealing and powerful model to study the liver microenvironment and immune cell composition using non-invasive fluorescent live imaging. This protocol describes how to use a NASH-associated HCC zebrafish model to investigate the effect of cholesterol surplus in the liver microenvironment and its impact on immune cell composition at early stages of the disease. First, we feed HCC larvae (s704Tg), which express hepatocyte-specific activated beta-catenin, with a 10% high cholesterol diet for 8 days to develop a NASH-associated HCC model. Here we describe how to make use of different transgenic lines to evaluate several early malignancy features in the liver by non-invasive confocal microscopy, such as liver area, cell, and nuclear morphology (hepatocytes area, nuclear area, nuclear:cytoplasmic ratio (N:C ratio), nuclear circularity, micronuclei/nuclear herniation scoring) and angiogenesis. Then, using transgenic lines with tagged immune cells (neutrophils, macrophages, and T cells) we show how to analyze liver immune cell composition in NASH-associated HCC larvae. The described techniques are useful to evaluate liver microenvironment and immune cell composition at early hepatocarcinogenesis stages, but they can also be modified to study such features in other liver disease models.

Tags

Keywords Zebrafish

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved