A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This manuscript describes the intravesical administration of uropathogenic bacteria with a lux operon to induce a urinary tract infection in mice and subsequent longitudinal in vivo analysis of the bacterial load using bioluminescence imaging.
Urinary tract infections (UTI) rank among the most common bacterial infections in humans and are routinely treated with empirical antibiotics. However, due to increasing microbial resistance, the efficacy of the most used antibiotics has declined. To find alternative treatment options, there is a great need for a better understanding of the UTI pathogenesis and the mechanisms that determine UTI susceptibility. In order to investigate this in an animal model, a reproducible, non-invasive assay to study the course of UTI is indispensable.
For years, the gold standard for the enumeration of bacterial load has been the determination of Colony Forming Units (CFU) for a particular sample volume. This technique requires post-mortem organ homogenates and serial dilutions, limiting data output and reproducibility. As an alternative, bioluminescence imaging (BLI) is gaining popularity to determine the bacterial load. Labeling pathogens with a lux operon allow for the sensitive detection and quantification in a non-invasive manner, thereby enabling longitudinal follow-up. So far, the adoption of BLI in UTI research remains limited.
This manuscript describes the practical implementation of BLI in a mouse urinary tract infection model. Here, a step-by-step guide for culturing bacteria, intravesical instillation and imaging is provided. The in vivo correlation with CFU is examined and a proof-of-concept is provided by comparing the bacterial load of untreated infected animals with antibiotic-treated animals. Furthermore, the advantages, limitations, and considerations specific to the implementation of BLI in an in vivo UTI model are discussed. The implementation of BLI in the UTI research field will greatly facilitate research on the pathogenesis of UTI and the discovery of new ways to prevent and treat UTI.
Urinary tract infections (UTI) are among the most common bacterial infections in humans. Almost half of all women will experience a symptomatic UTI during their lifetime1. Infections limited to the bladder can give rise to urinary symptoms such as increase in urinary frequency, urgency, hematuria, incontinence, and pain. When the infection ascends to the upper urinary tract, patients develop pyelonephritis, with malaise, fever, chills, and back pain. Furthermore, up to 20% of patients with UTI suffer from recurrent infections resulting in a dramatic decrease in antibiotic sensitivity2,3,4. In recent years, there has been a growing interest in novel therapies for the treatment and prevention of recurrent UTI. Despite a better understanding of the innate and adaptive immunity of the lower urinary tract and of the bacterial virulence factors necessary for invasion and colonization, no radical changes in the treatment regime have been translated to the daily urological practice2. In order to study UTI pathogenesis and susceptibility in vivo, a reproducible and non-invasive assay is indispensable.
Multiple animal UTI models have been described ranging from nematodes to primates, but the murine model is predominantly used5,6. This model consists of transurethral catheterization of (female) mice and subsequent instillation of a bacterial suspension, most commonly uropathogenic Escherichia coli (UPEC), directly into the bladder lumen7. After inoculation, the bacterial load has traditionally been quantified by determining colony forming units (CFU). This technique requires sacrificing animals to obtain post-mortem organ homogenates and serial dilutions, limiting data output and reproducibility. Moreover, longitudinal follow-up of the bacterial load in individual animals is not possible using this technique.
In 1995, Contag et al. suggested the use of bioluminescent-tagged pathogens to monitor disease processes in living animals8,9. Since then, bioluminescence imaging (BLI) has been applied to numerous infection models such as meningitis, endocarditis, osteomyelitis, skin, and soft tissue infections, etc.10,11,12. In the murine UTI model, a UPEC strain with the complete lux operon (luxCDABE) from Photorhabdus luminescens can be used13. An enzymatic reaction is catalyzed by the bacterial luciferase which is dependent on the oxidation of long-chain aldehydes reacting with reduced flavin mononucleotide in the presence of oxygen, yielding the oxidized flavin, a long-chain fatty acid and light12. The lux operon encodes for the luciferase and other enzymes required for the synthesis of the substrates. Therefore, all metabolically active bacteria will continuously emit blue green (490 nm) light without the need for the injection of an exogenous substrate12. Photons emitted by lux-tagged bacteria can be captured using highly sensitive, cooled charge-coupled device (CCD) cameras.
The use of bioluminescent bacteria in a model for UTI allows for the longitudinal, non-invasive quantification of the bacterial load, omitting the need for sacrificing animals at fixed time points during the follow-up for CFU determination. Despite the wide range of possibilities, accumulating evidence for the robustness of this BLI technique in other fields and its advantages over classic models of UTI, it has not been widely implemented in the UTI research. The protocol presented here provides a detailed step-by-step guide and highlights the advantages of BLI for all future UTI research.
All animal experiments were conducted in accordance with the European Union Community Council guidelines and were approved by the Animal Ethics Committee of KU Leuven (P158/2018).
1. Culturing bacteria (adapted from7,13,14)
2. Inoculation of the animals (adapted from7,16)
3. Bioluminescence imaging
In vivo BLI correlates with CFU of the inoculum at time of instillation.
To evaluate the detection limit of BLI in vivo and the correlation with CFU of the inoculum, mice were infected with different concentrations of UTI89-lux and PBS as a negative control. Before instillation, uninfected animals were scanned to determine the background luminescence. Subsequent images were obtained immediately post-instillation (Figure 1A). ...
Advantages of BLI compared to CFU counts
Longitudinal data
A major disadvantage of the traditional method of counting CFU to quantify microbial burden is the requirement of post-mortem organ homogenates, providing only one cross-sectional data point per animal. Conversely, BLI enables non-invasive longitudinal follow-up of infected animals. The animals can be imaged 2 to 3 times a day, providing detailed insight into the kinetics of the infection. Additionally, repeated measures of t...
The authors declare no conflicts of interest.
This work was supported by grants from the Research Foundation - Flanders (FWO Vlaanderen; G0A6113N), the Research Council of KU Leuven (C1-TRPLe; T.V. and W.E.) and the VIB (to T.V.). W.E. is a senior clinical researcher of the Research Foundation - Flanders (FWO Vlaanderen). The strain UTI89-lux was a generous gift from Prof. Seed's laboratory13.
Name | Company | Catalog Number | Comments |
96-well Black Flat Bottom Polystyrene Plate | Corning | 3925 | for in vitro imaging |
Aesculap ISIS | Aesculap | GT421 | hair trimmer, with GT608 cap |
Anesthesia vaporizer | Harvard apparatus limited | N/A | https://www.harvardapparatus.com/harvard-apparatus-anesthetic-vaporizers.html |
Baytril 100 mg/mL | Bayer | N/A | Enrofloxacin |
BD Insyte Autoguard 24 GA | BD | 382912 | Yellow angiocatheter, use sterile plastic tip for instillation |
C57Bl/6J mice | Janvier | N/A | |
Centrifuge 5804R | Eppendorf | EP022628146 | |
Dropsense 16 | Unchained Labs | Trinean | to measure OD 600nm |
Dulbecco's Phosphate Buffered Saline, Gibco | ThermoFisher Scientific | REF 14040-083 | |
Ethanol 70% denaturated 5L | VWR international | 85825360 | |
Falcon 14ml Round Bottom Polystyrene Tube, Snap-Cap | Corning | 352057 | |
Falcon 50ml cellstart | Greiner | 227285 | |
Hamilton GASTIGHT syringe, PTFE luer lock, 100 µL | Sigma-Aldrich | 26203 | to ensure slow bacterial instillation of 50 µL |
Inoculation loop | Roth | 6174.1 | holder: Art. No. 6189.1 |
Iso-Vet 1000mg/g | Dechra Veterinary products | N/A | Isoflurane |
IVIS Spectrum In Vivo Imaging System | PerkinElmer | REF 124262 | imaging device |
Kanamycine solution 50 mg/mL | Sigma-Aldrich | CAS 25389-94-0 | |
Living Imaging Software | PerkinElmer | N/A | BLI acquisition software, version 4.7.3 |
Luria Bertani Broth | Sigma-Aldrich | REF L3022 | alternatively can be made |
Luria Bertani Broth with agar | Sigma-Aldrich | REF L2897 | alternatively can be made |
Petri dish Sterilin 90mm | ThermoFisher Scientific | 101VR20 | to fill with LB agar supplemented with Km |
Pyrex Culture flask 250 mL | Sigma-Aldrich | SLW1141/08-20EA | |
Slide 200 Trinean | Unchained Labs | 701-2007 | to measure OD 600nm |
UTI89-lux | N/A | N/A | Generous gift from Prof. Seed |
Vortex | VWR international | 444-1372 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved