A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We introduce a protocol for measuring real-time drug and radiation response of breast cancer brain metastatic cells in an organotypic brain slice model. The methods provide a quantitative assay to investigate the therapeutic effects of various treatments on brain metastases from breast cancer in an ex vivo manner within the brain microenvironment interface.
Brain metastasis is a serious consequence of breast cancer for women as these tumors are difficult to treat and are associated with poor clinical outcomes. Preclinical mouse models of breast cancer brain metastatic (BCBM) growth are useful but are expensive, and it is difficult to track live cells and tumor cell invasion within the brain parenchyma. Presented here is a protocol for ex vivo brain slice cultures from xenografted mice containing intracranially injected breast cancer brain-seeking clonal sublines. MDA-MB-231BR luciferase tagged cells were injected intracranially into the brains of Nu/Nu female mice, and following tumor formation, the brains were isolated, sliced, and cultured ex vivo. The tumor slices were imaged to identify tumor cells expressing luciferase and monitor their proliferation and invasion in the brain parenchyma for up to 10 days. Further, the protocol describes the use of time-lapse microscopy to image the growth and invasive behavior of the tumor cells following treatment with ionizing radiation or chemotherapy. The response of tumor cells to treatments can be visualized by live-imaging microscopy, measuring bioluminescence intensity, and performing histology on the brain slice containing BCBM cells. Thus, this ex vivo slice model may be a useful platform for rapid testing of novel therapeutic agents alone or in combination with radiation to identify drugs personalized to target an individual patient's breast cancer brain metastatic growth within the brain microenvironment.
Breast cancer brain metastases (BCBM) develop when cells spread from the primary breast tumor to the brain. Breast cancer is the second most frequent cause of brain metastasis after lung cancer, with metastases occurring in 10-16% of patients1. Unfortunately, brain metastases remain incurable as >80% of patients die within a year after their brain-metastasis diagnosis, and their quality of life is impaired due to neurological dysfunctions2. There is an urgent need to identify more effective treatment options. Monolayer two-dimensional or three-dimensional culture models are the most commonly used methods in testing therapeutic agents in the laboratory. However, they do not mimic the complex BCBM microenvironment, a major driver of tumor phenotype and growth. Although these models are useful, they do not capture the complex tumor-stromal interactions, the unique metabolic requirements, and the heterogeneity of the tumors3. To more faithfully recapitulate tumor-stromal interactions and microenvironment heterogeneity, our group and others have begun to generate organotypic brain metastasis "slice" cultures with patient-derived tumor cells (primary or metastatic) or cancer cell lines4,5,6. Compared to classical in vitro systems, this short-term ex vivo model may provide more relevant conditions for screening new therapeutics prior to preclinical assessment in large animal cohorts.
Ex vivo models have been constructed and successfully used primarily for the identification of successful treatments of various cancers. They require few days of assessment and additionally can be tailored to patient-specific drug screening. For example, human bladder and prostate cancer ex vivo tissues have shown a dose-dependent anti-tumor response of docetaxel and gemcitabine7. Similar colorectal carcinoma ex vivo tissues were developed to screen chemotherapeutic drugs Oxaliplatin, Cetuximab, and Pembrolizumab8. This application has been widely used in pancreatic cancer, considering the essential interaction between the stromal environment and the genotypic and phenotypic characteristics of pancreatic ductal adenocarcinoma9,10. Furthermore, such organotypic models have been developed for similar screenings in head, neck, gastric, and breast tumors11,12.
Here, an ex vivo brain slice model of xenografted breast cancer brain metastatic tumor cells in their microenvironment is being generated. Mice were intracranially injected with breast cancer brain metastatic brain trophic MDA-MB-231BR cells13 in the cerebral cortex parietal lobe- a common site of TNBC metastasis14,15 and allowed to develop tumors. Brain slices were generated from these xenografted animals and maintained ex vivo as organotypic cultures as described16,17. This novel ex vivo model allows for the analysis of BCBM cell's growth within the brain parenchyma and can be used to test therapeutic agents and radiation effects on tumor cells within the brain microenvironment.
Access restricted. Please log in or start a trial to view this content.
This protocol was approved and follows the animal care guidelines by the Drexel University College of Medicine Institutional Animal Care and Use Committee (IACUC). Nu/Nu athymic female mice (6-8 weeks old) were used in this study.
1. Intracranial injection of tumor cells
2. Generate brain slices
NOTE: Perform the steps after brain isolation in a sterile laminar flow hood. It is typically possible to generate 35-40 individual slices containing tumor cells (luciferase signal) from one mouse injected with MDA-MB-231BR cells (Figure 1C).
3. IVIS imaging of slices
NOTE: Perform luciferase and inhibitor addition steps in a sterile laminar flow hood.
4. Live imaging of tumor growth in ex vivo brain slices
NOTE: Supply inserts with enough medium (1.5 mL) to last the length of the experiment as it is not possible to add additional medium during the live imaging.
5. MTS assay and immunohistochemistry of ex vivo brain tissue
6. Irradiation of tumor in ex vivo brain slices
Access restricted. Please log in or start a trial to view this content.
MDA-MB-231BR-GFP-Luciferase cells were intracranially injected into the right hemisphere of 4-6 week old Nu/Nu mice as explained above (Figure 1A) and were allowed to grow for 12-14 days, during which time tumor growth was monitored by bioluminescence imaging (Figure 1B). We injected 100,000 cancer cells intracranially as reported by other groups19, but it's possible to inject as low as 20,000 cell20. Following...
Access restricted. Please log in or start a trial to view this content.
This study establishes a novel ex vivo brain culture method for explanted xenograft brain tumors. We show that BCBM cells MDA-MB-231BR cells intracranially injected in the brain of mice can survive and grow in ex vivo brain slices. The study also tested intracranially injected U87MG glioblastoma (GBM) cells and also found that these cancer cells survive and grow in brain slices (data not shown). We believe this model can be expanded beyond BCBM and GBM to other cancers that readily metastasize to the br...
Access restricted. Please log in or start a trial to view this content.
Authors have no financial conflicts to declare.
We want to thank Julia Farnan, Kayla Green, and Tiziana DeAngelis for their technical assistance. This work was supported in part by the Pennsylvania Commonwealth Universal Research Enhancement Grant Program (MJR, JGJ), UO1CA244303 (MJR), R01CA227479 (NLS), R00CA207855 (EJH), and W.W. Smith Charitable Trusts (EjH).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
1 mL syringe, slip tip | BD | 309659 | |
30 G1/2 Needles | BD | 305106 | |
6-well plates | Genessee | 25-105 | |
Automated microscope and LUMAVIEW software | Etaluma | LS720 | |
B27 (GEM21) | Gemini Bio-Products | 400-160 | |
Beaker 50 mL | Fisher | 10-210-685 | |
Blunt sable paintbrush, Size #5/0 | Electron Microscopy Sciences | 66100-50 | |
Bone Wax | ModoMed | DYNJBW25 | |
Brain injection Syringe | Hamilton Company | 80430 | |
CaCl2 | Fisher Scientific | BP510-250 | |
Cleaved caspase 3 Antibody | Cell Signaling | 14220S | |
DAPI | Invitrogen | P36935 | |
D-Luciferin Potassium Salt | Perkin Elmer | 122799 | |
Double edge razor blade | VWR | 55411-060(95-0043) | |
Filter Paper (#1), quantitative circles, 4.25 cm | Fisher | 09-805a (1001-042) | |
Fine sable paintbrush #2/0 | Electron Microscopy Sciences | 66100-20 | |
Forceps | Fine Science Tools | 11251-20 | |
Gamma-H2AX antibody | Millipore | 05-636 | |
GFAP antibody | Thermo Fisher | 13-0300 | |
GFP antibody | Santa Cruz | SC-9996 | |
Glucose | Sigma Aldrich | G8270 | |
Glutamine (200 mM) | Corning cellgrow | 25-005-Cl | |
H&E and KI-67 | Jefferson Core Facility Pathology staining | ||
Hand Drill Set with Micro Mini Twist Drill Bits | Amazon | YCQ2851920086082DJ | |
HEPES, free acid | Fisher Scientific | BP299-1 | |
Just for mice Stereotaxic Frame | Harvard Apparatus (Holliston, MA, USA). | 72-6049, 72-6044 | |
KCl | Fisher Scientific | S271-10 | |
Large surgical scissors | Fine Science Tools | 14001-18 | |
MDA-MB-231BR cells | Kindly provided by Dr. Patricia Steeg | Ref 14 | |
MgCl2·6H2O | Fisher Scientific | M33-500 | |
Mice imaging device | Perkin Elmer | IVIS 200 system | |
Mice imaging software | Caliper Life Sciences (Waltham, MA, USA). | Living Image Software | |
Microplate Reader | Tecan Spark | ||
Mounting solution | Invitrogen | P36935 | |
MTS reagent | Promega CellTiter 96 Aqueous One Solution | (Cat:G3582) | |
N2 supplement | Life Technologies | 17502-048 | |
Neurobasal medium | Life Technologies | 21103049 | |
Nu/Nu athymic mice | Charles Rivers Labs (Wilmington, MA, USA) | ||
Paraformaldehyde | Affymetrix | 19943 | |
Pen/Strep | Life Technologies | 145140-122 | |
Polypropylene Suture | Medex supply | ETH-8556H | |
Povidone Iodine Swab sticks | DME Supply USA | Cat: 689286X | |
Scalpel blade #11 (pk of 100) | Fine Science Tools | 10011-00 | |
Scalpel handle #3 | Fine Science Tools | 10003-12 | |
Sodium Pyruvate | Sigma Aldrich | S8636 | |
Spatula/probe | Fine Science Tools | 10090-13 | |
SS Double edge uncoated razor blades (American safety razor co (95-0043)) | VWR | 55411-060 | |
Sucrose | Amresco | 57-50-1 | |
Surgical Scalpel | Exelint International | D29702 | |
Tissue Chopper | Brinkman | (McIlwain type) | |
Tissue culture inserts | Millipore | PICMORG50 or PICM03050 | |
X-ray machine | Precision 250 kVp |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved