Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes how to generate a polysome profile without using automated gradient makers or gradient fractionation systems.

Abstract

Polysome fractionation by sucrose density gradient centrifugation is a powerful tool that can be used to create ribosome profiles, identify specific mRNAs being translated by ribosomes, and analyze polysome associated factors. While automated gradient makers and gradient fractionation systems are commonly used with this technique, these systems are generally expensive and can be cost-prohibitive for laboratories that have limited resources or cannot justify the expense due to their infrequent or occasional need to perform this method for their research. Here, a protocol is presented to reproducibly generate polysome profiles using standard equipment available in most molecular biology laboratories without specialized fractionation instruments. Moreover, a comparison of polysome profiles generated with and without a gradient fractionation system is provided. Strategies to optimize and produce reproducible polysome profiles are discussed. Saccharomyces cerevisiae is utilized as a model organism in this protocol. However, this protocol can be easily modified and adapted to generate ribosome profiles for many different organisms and cell types.

Introduction

Ribosomes are mega-Dalton ribonucleoprotein complexes that perform the fundamental process of translating mRNA into proteins. Ribosomes are responsible for carrying out the synthesis of all proteins within a cell. Eukaryotic ribosomes comprise two subunits designated as the small ribosomal subunit (40S) and the large ribosomal subunit (60S) according to their sedimentation coefficients. The fully assembled ribosome is designated as the 80S monosome. Polysomes are groups of ribosomes engaged in translating a single mRNA molecule. Polysome fractionation by sucrose density gradient centrifugation is a powerful method used to create ribosome profiles, identify specific mR....

Protocol

1. Preparation of 7% - 47% sucrose gradients

NOTE: The linear range of the sucrose gradient can be modified to achieve better separation depending on the cell type used. This protocol is optimized for polysome profiles for S. cerevisiae.

  1. Prepare stock solutions of 7% and 47% sucrose in sucrose gradient buffer (20 mM Tris-HCl pH 7.4, 60 mM KCl, 10 mM MgCl2, and 1 mM DTT). Filter sterilize the sucrose stock solutions through a 0.22 μm filter and store at 4 &#.......

Representative Results

Three representative polysome profiles are shown in Figure 3. All profiles are from the same yeast strain. A typical polysome profile will have well-resolved peaks for the 40S, 60S, and 80S ribosomal subunits as well as polysomes. The crest of each ribosomal subunit and polysome peak will be apparent on each profile (Figure 3). A representative profile from an automated density fractionation system is shown in Figure 3A. The sucrose.......

Discussion

Here a method to create polysome profiles without the use of expensive automated fractionation systems has been described. The advantage of this method is that it makes polysome profiling accessible to labs that do not have automated fractionation systems. The major disadvantages of this protocol are tedious hand fractionation and reduced sensitivity compared to the dedicated density fractionation system.

This protocol entails careful preparation of sucrose gradients with resolution sufficient.......

Acknowledgements

The authors thank Dr. Percy Tumbale and Dr. Melissa Wells for their critical reading of this manuscript. This work was supported by the US National Institute of Health Intramural Research Program; US National Institute of Environmental Health Sciences (NIEHS; ZIA ES103247 to R.E.S).

....

Materials

NameCompanyCatalog NumberComments
Automatic FractionatorBrandel
Clariostar Multimode Plate ReaderBMG Labtech
CycloheximideSigma AldrichC7698
DithiothreitolInvitrogen15508-013
Glass Beads, acid washedSigma AldrichG8772425–600 μm
HeparinSigma AldrichH4784
Magnesium Chloride, 1 MKD MedicalCAC-5290
Needle, 22 G, Metal HubHamilton Company7748-08custom length 9 inches, point style 3
Optima XL-100K UltracentrifugeBeckman Coulter
Polypropylene Centrifuge tubesBeckman Coulter331372
Polypropylene Test Tube Peg RackFisher Scientific14-810-54A
Potassium ChlorideSigma AldrichP9541
Qubit 4 FluorometerThermo Fisher ScientificQ33228
Qubit RNA HS Assay KitThermo Fisher ScientificQ32855
RNAse InhibitorApplied BiosystemsN8080119
SucroseSigma AldrichS0389
SW41 Swinging Bucket Rotor PkgBeckman Coulter331336
Syringe, 3 mLCoviden888151394
Tris, 1 M,  pH 7.4KD MedicalRGF-3340
Triton X-100Sigma AldrichX100
UV-Star Microplate, 96 wellsGreiner Bio-One655801

References

  1. Choi, A., Barrientos, A. Sucrose gradient sedimentation analysis of mitochondrial ribosomes. Methods in Molecular Biology. 2192, 211-226 (2021).
  2. Dos Santos, R. F., Barria, C., Arraiano, C. M., Andrade, J. M.

Explore More Articles

Polysome ProfilingGradient freeSucrose GradientRibosome ActivityYeast Cell LysisRNA ExtractionRNA Quantification

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved