A subscription to JoVE is required to view this content. Sign in or start your free trial.
Despite recent advances, many yeast mitochondrial proteins still remain with their functions completely unknown. This protocol provides a simple and reliable method to determine the submitochondrial localization of proteins, which has been fundamental for the elucidation of their molecular functions.
Despite recent advances in the characterization of yeast mitochondrial proteome, the submitochondrial localization of a significant number of proteins remains elusive. Here, we describe a robust and effective method for determining the suborganellar localization of yeast mitochondrial proteins, which is considered a fundamental step during mitochondrial protein function elucidation. This method involves an initial step that consists of obtaining highly pure intact mitochondria. These mitochondrial preparations are then subjected to a subfractionation protocol consisting of hypotonic shock (swelling) and incubation with proteinase K (protease). During swelling, the outer mitochondrial membrane is selectively disrupted, allowing the proteinase K to digest proteins of the intermembrane space compartment. In parallel, to obtain information about the topology of membrane proteins, the mitochondrial preparations are initially sonicated, and then subjected to alkaline extraction with sodium carbonate. Finally, after centrifugation, the pellet and supernatant fractions from these different treatments are analyzed by SDS-PAGE and western blot. The submitochondrial localization as well as the membrane topology of the protein of interest is obtained by comparing its western blot profile with known standards.
Mitochondria are essential organelles of eukaryotic cells that play crucial roles in bioenergetics, cellular metabolism, and signaling pathways1. To properly execute these tasks, mitochondria rely on a unique set of proteins and lipids responsible for their structure and function. The budding yeast Saccharomyces cerevisiae has been widely used as a model system for investigations on mitochondrial processes, as well as for other organelles2. The mitochondrial genome codes for only eight proteins in yeast; the vast majority of mitochondrial proteins (~99%) are encoded by nuclear genes, which are translated on cytosolic ribosomes, and subsequently imported into their correct submitochondrial compartments by sophisticated protein import machineries3,4,5. Thus, mitochondrial biogenesis depends on the coordinated expression of both the nuclear and mitochondrial genomes6,7. Genetic mutations causing defects in mitochondrial biogenesis are associated with human diseases8,9,10.
In the past two decades, high-throughput proteomic studies targeting highly-purified mitochondria resulted in a comprehensive characterization of yeast mitochondrial proteome, which has been estimated to be composed of at least 900 proteins11,12,13,14. Although these studies provided valuable information, the suborganellar localization of each protein in the four mitochondrial subcompartments, namely, the outer membrane (OM), intermembrane space (IMS), inner membrane (IM), and matrix, is still required. This question was partially addressed with proteomic-wide studies of the two smaller mitochondrial subcompartments (OM and IMS)15,16. More recently, Vögtle and collaborators made a major step forward by generating a high-quality global map of submitochondrial protein distribution in yeast. Using an integrated approach combining SILAC-based quantitative mass spectrometry, different submitochondrial fractionation protocols, and the data set from the OM and IMS proteomes, the authors assigned 818 proteins into the four mitochondrial subcompartments13.
Despite the advances achieved by these high-throughput proteomic studies, our knowledge about the submitochondrial proteome composition is far from being complete. Indeed, among 986 proteins reported by Vögtle and collaborators as being localized into yeast mitochondria, 168 could not be assigned in any of the four submitochondrial compartments13. Moreover, the authors did not provide information about the membrane topology of proteins that were predicted to be peripherally attached to the periphery of mitochondrial membranes. For example, it is not possible to know if a protein that was assigned as peripherally attached to the inner membrane is facing the matrix or the intermembrane space. Apart from these missing data from the proteome-wide studies, there are conflicting information about the suborganellar localization of a significant number of mitochondrial proteins. One example is the protease Prd1, which has been assigned as an intermembrane space protein in the common databases such as Saccharomyces Genome Database (SGD) and Uniprot. Surprisingly, using a subfractionation protocol similar to that described here, Vögtle and collaborators clearly showed that Prd1 is a genuine matrix protein13. As mentioned above, the submitochondrial localization of many mitochondrial proteins needs to be elucidated or reevaluated. Here, we provide a simple and reliable protocol to determine the suborganellar localization of yeast mitochondrial proteins. This protocol was developed and optimized by various research groups and has been routinely used to determine the submitochondrial localization, as well as the membrane topology of many mitochondrial proteins.
1. Growth of yeast cells
2. Isolation of highly purified mitochondria
NOTE: This protocol is adapted from17, with minor modifications.
3. Submitochondrial fractionation protocol
NOTE: This protocol is adapted from reference18 and is composed of two steps: (1) hypotonic swelling in the presence or absence of proteinase K, and (2) sonication followed by carbonate extraction. Perform all the steps of both the protocols on ice or at 4 °C to avoid protein degradation.
The success of submitochondrial fractionation protocol depends on obtaining highly purified intact mitochondria. For this, it is essential that during the yeast cell lysis, the intactness of the organelles remains almost totally preserved. This is achieved by using a cell lysis protocol that combines the enzymatic digestion of the cell wall followed by physical disruption of the plasma membrane by using a Dounce homogenizer. The mitochondrial contents are then collected by differential centrifugation. This subcellular fr...
The protocol presented here has been successfully used and continuously optimized for a long-time to determine the protein localization in the submitochondrial compartments13,14,18,21,22,23. The reliability and reproducibility of this protocol are strongly dependent on the purity and integrity of mitochondrial preparations
The authors declare no conflicts of interest.
We thank Dr. A. Tzagoloff (Columbia University) for providing antibodies raised against submitochondrial marker proteins Cyt. b2, αKGD, and Sco1. We also thank Dr. Mario Henrique de Barros (Universidade de São Paulo) for helpful discussion and comments during the establishment of this protocol.
This work was supported by research grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (grant 2013/07937-8).
Fernando Gomes and Helena Turano are also supported by FAPESP, grants 2017/09443-3 and 2017/23839-7, respectively. Angélica Ramos is also supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).
Name | Company | Catalog Number | Comments |
Bacto Peptone | BD | 211677 | |
Bacto Yeast extract | BD | 212750 | |
Beckman Ultra-Clear Centrifuge Tubes, 14 x 89 mm | Beckman Coulter | 344059 | |
Bovine serum albumin (BSA fatty acid free) | Sigma-Aldrich | A7030 | Component of Homogenization buffer |
DL-Dithiothreitol | Sigma-Aldrich | 43815 | Component of DDT buffer |
D-Sorbitol | Sigma-Aldrich | S1876 | |
Ethylenediaminetetraacetic acid (EDTA) | Sigma-Aldrich | E9884 | |
Galactose | Sigma-Aldrich | G0625 | |
Glucose | Sigma-Aldrich | G7021 | |
MOPS | Sigma-Aldrich | M1254 | |
Phenylmethylsulfonyl fluoride (PMSF) | Sigma-Aldrich | P7626 | Used to inactivate proteinase K |
Potassium phosphate dibasic | Sigma-Aldrich | P3786 | |
Potassium phosphate monobasic | Sigma-Aldrich | P0662 | |
Proteinase K | Sigma-Aldrich | ||
Sucrose | Sigma-Aldrich | S8501 | |
Trichloroacetic acid (TCA) | Sigma-Aldrich | T6399 | |
Trizma Base | Sigma-Aldrich | T1503 | |
Zymolyase-20T from Arthrobacter luteus | MP Biomedicals, Irvine, CA | 320921 | Used to lyse living yeast cell walls to produce spheroplast |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved