A subscription to JoVE is required to view this content. Sign in or start your free trial.
The present protocol explains a method to feed pesticide-contaminated provisions to the larvae of the solitary bees, Osmia excavata. The procedure examines the ecotoxicity of the pesticide to the larvae of the solitary bees.
Current ecological risk assessments of pesticides on pollinators have primarily considered only laboratory conditions. For the larvae of solitary bees, ingestion of provisions contaminated with pesticides may increase the mortality rate of the larvae, decrease the collection rate and the population of adult solitary bees in the next year from a demographic perspective. But there are limited studies on the effects of pesticides on the larvae of solitary bees. Therefore, understanding how pesticides influence the larvae of solitary bees should be considered an integral part of pesticide ecological risk assessment. This study presents a method to expose the larvae of solitary bee, Osmia excavata, to lethal or sublethal doses of pesticide, tracking larval weight gain, developmental duration, eclosion ability, and food consumption efficiency conversion of ingested food. To demonstrate the effectiveness of this method, the larvae of O. excavata were fed with provisions containing acute lethal and sublethal doses of chlorpyrifos. Then, the above indexes of the treated larvae were investigated. This technique helps to predict and mitigate the risk of pesticides to pollinators.
Pollinators play a critical role in the ecosystem services of modern global agriculture. While honey bees (Apis mellifera; Hymenoptera: Apidae) have traditionally been considered as the essential economic pollinators of crops, recent research suggests that Osmia (Hymenoptera: Megachilidae) is also very important in improving pollination for certain crops, increasing fruit size and number of seeds, and reducing the proportion of asymmetric fruit in commercial orchards in different parts of the world1. Osmia excavata has been considered an ideal species for apple pollination, mainly in Asia, like in north and northwest China and Japan2,3,4. It can provide pollination services for certain crops with similar or sometimes with greater efficiency. In this respect, they have been shown to replace or work in synergy with the honey bees4,5,6.
The biological characteristics of O. excavata are unique compared with social bees. Its univoltine, solitary, and nesting activity occurs mainly in spring and early summer. The nests of O. excavata are usually found in preexisting holes, typically in deadwood, hollow plants, straw tubes, and bamboo stem in the natural condition3. The adult O. excavata emerges from its cocoon to mate, gather pollen, and build a nest to lay eggs, which begin to hatch a week later. The fertilized eggs develop into females, while the unfertilized eggs develop into males3. Females are distributed in the bottom of the bee tube, and the corresponding provisions are more significant. In contrast, males were in the proximity of tube exit with minor provisions7, so the males come out first, and the females come out later. The female mixes pollen with a small amount of nectar into a moist blob, the only food source for each larva in the cell8.
Several studies have reported a decrease in the population of pollinating insects9,10. The extensive use of pesticides has been identified as one of the main factors for reducing pollinator abundance and diversity and may also endanger pollination services11,12. To reduce and mitigate the adverse effects of pesticides, it is necessary to conduct a pesticide risk assessment for pollinators. Some countries have established regulatory frameworks to ensure safety to bees from the pesticides used13,14. Recent studies have shown that Osmia was more susceptible to pesticides than honey bees1,15.
Interestingly, most risk assessments were focused on adult honey bees11,12; little research has been conducted on O. excavata, especially the larvae. Furthermore, the mortality of Osmia directly caused by pesticides is most commonly considered16. Still, the chronic toxicities such as larval weight gain, developmental duration, feeding patterns, eclosion ability, subsequent adult behavior, and fecundity may have the same harm as the acute lethal toxicities and are often ignored because of a lack of an effective experimental method for the solitary bees17.
Up to now, two methods are used to evaluate the effects of pesticides on the larvae of solitary bees: (1) an appropriate amount of pesticide was applied in the localized spot of provisions without removing the egg of solitary bees1,18,19,20; (2) replacing provisions with artificial pollen-nectar mixtures containing a specific amount of pesticide21. However, there are some limitations to the above two methods. The former can only measure acute toxicity, but not chronic toxicity because the larvae ingested the entire dose in a short period of time; the latter would lead to a high mortality rate because of human manipulation1. Here, the immersion method was described to study the ecotoxicity of pesticides to O. excavata under highly controlled research conditionsby simulating the behavior of larval feeding on residual pesticide in the provisions in the real environment. The method of this study solves the disadvantages of the above two methods and is suitable for measuring the effects of a hazardous substance on acute and chronic toxicity.
1. Preparation of the feeding tube
2. Preparation of pesticide
3. Preparation of the provisions
4. Provision treatment with pesticide
5. Growth conditions
6. Examination of the results
The contents of commonly used pesticides, chlorpyrifos, imidacloprid, fendifenuron, phoxim, avermectin in provisions were less than the limit of quantification (0.01-0.02 mg kg-1) in the control group; these results excluded the influence of pesticide residues on each treatment. The mortality with and without removing larvae from provisions after 48 h in control groups was evaluated; the results showed no significant differences (Table 1), indicating a minor human error.
For adult pollinators, there are two main methods for measuring the ecotoxicity of pesticides. One is the contact method, in which the pesticide is applied to the prothorax of the adult insects; the other is the gastric toxicity method, in which the adult pollinators are fed with honey water containing pesticide25,26. In recent years, it has been found that the pollination effect and eclosion rate of O. excavata are relatively low27
The authors have no conflicts of interest to declare.
This study was supported by the National Key R&D Program of China (2017YFD0200400), Major Scientific and Technological Innovation Project (2017CXGC0214), Bee Industry Innovation Team of Shandong Province, Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences (CXGC2019G01), and Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences (CXGC2021B13).
Name | Company | Catalog Number | Comments |
Abamectin | Jinan Lvba Pesticide Co. Ltd | ||
Black-light lamps | Kanghua Medical Device Co., Ltd | ||
Centrifugal tube box with 100 Wells | Shanghai Rebus Network Technology Co., Ltd | ||
Centrifuge tube | Shanghai Rebus Network Technology Co., Ltd | 2 mL; Serve as bee tube | |
Electric soldering iron | Kunshan Kaipai Hardware Electromechanical Co., Ltd | ||
Electronic scale | Sartorius Scientific Instruments (Beijing) Co., Ltd | 3137510295 | |
Graduated cylinder | Anhui Weiss Experimental Equipment Co. Ltd | ||
Petri dishes (60 mm diameter) | Qingdao jindian biochemical equipment co., LTD | ||
Pollen provision | Yantai Bifeng Agricultural Science and Technology Co. Ltd | ||
Soft brush | Wengang Wenhai painting material factory | ||
Solitary bees | Yantai Bifeng Agricultural Science and Technology Co. Ltd |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved