Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We present a method of cell injection via needle free waterjet technology coupled with a sequela of post-delivery investigations in terms of cellular viability, proliferation, and elasticity measurements.

Abstract

Urinary incontinence (UI) is a highly prevalent condition characterized by the deficiency of the urethral sphincter muscle. Regenerative medicine branches, particularly cell therapy, are novel approaches to improve and restore the urethral sphincter function. Even though injection of active functional cells is routinely performed in clinical settings by needle and syringe, these approaches have significant disadvantages and limitations. In this context, needle-free waterjet (WJ) technology is a feasible and innovative method that can inject viable cells by visual guided cystoscopy in the urethral sphincter. In the present study, we used WJ to deliver porcine adipose tissue-derived stromal cells (pADSCs) into cadaveric urethral tissue and subsequently investigated the effect of WJ delivery on cell yield and viability. We also assessed the biomechanical features (i.e., elasticity) by atomic force microscopy (AFM) measurements. We showed that WJ delivered pADSCs were significantly reduced in their cellular elasticity. The viability was significantly lower compared to controls but is still above 80%.

Introduction

Urinary incontinence (UI) is a widespread disorder with a prevalence of 1.8 - 30.5% in European populations1 and is characterized primarily by malfunctioning of the urethral sphincter. From a clinical perspective, surgical treatment is often offered to patients when conservative therapies or physiotherapy fail to address and alleviate the emerging symptoms.

Cell therapy for the potential regenerative repair of the sphincter complex malfunction has been emerging as an avant-garde approach for the treatment of UI pathology2,3. Its main goals are to replace, rep....

Protocol

The porcine adipose tissue samples were obtained from the Institute for Experimental Surgery at the University of Tuebingen. All procedures were approved by local animal welfare authorities under the animal experiment number CU1/16.

1. Isolation of porcine adipose tissue-derived stromal cells

  1. Use porcine adipose tissue delivered from the Institute for Experimental Surgery in a 50 mL centrifuge tube to the laboratory.
  2. Transfer the tissue to a sterile Petri.......

Representative Results

Following cell delivery via the two approaches, the viability of cells delivered through the WN (97.2 ± 2%, n=10, p<0.002) was higher when compared to injections by WJ using the E60-10 settings (85.9 ± 0.16%, n=12) (Figure 2). Biomechanical assessment results showed that: WN injections of cells in capture fluid displayed no significant difference with respect to the elastic moduli (EM; 0.992 kPa) when compared to the controls (1.176 kPa; Figure 3A).......

Discussion

In the present study, we demonstrated and presented a step-by-step approach for WJ cell delivery procedure and employed a sequela of quantitative investigations to assess the effect of WJ delivery on cellular characteristics: cellular viability and biomechanical features (i.e., EM). Following WJ injection, 85.9% of the harvested cells were viable. In terms of WN injection, 97.2% of the cells retained their viability after injection. Thus, the WJ approach fulfills an absolute requirement for a clinical implementation: mor.......

Acknowledgements

We thank our co-authors from the original publications for their help and support.

....

Materials

NameCompanyCatalog NumberComments
50 mL centrifuge tubeGreiner BioOne227261
1 mL BD Luer-LokTM SyringeBD Plastik Incn.a.
100 µm cell sieveGreiner BioOne542000
15 mL centrifuge tubeGreiner BioOne188271
75 cm2 tissue culture flaskCorning Incorporated353136
AFM head(CellHesion 200) JPKJPK00518
AFM processing softwareBrukerJPK00518
AFM softwareBrukerJPK00518
AFM system Cell Hesion 200BrukerJPK00518
All-In-One-Al cantileverBudget SensorsAIO-10tip A, Conatct Mode, Shape: Beam
Force Constant: 0.2 N/m (0.04 - 0.7 N/m)
Resonance Frequency: 15 kHz (10 - 20 kHz)
Length: 500 µm (490 - 510 µm)
Width: 30 µm (35 - 45 µm)
Thickness: 2.7 µm (1.7 - 3.7 µm)
Amphotericin B solutionSigmaA2942250 µg/ml
Atomic Force Microscope (AFM)CellHesion 200, JPK Instruments, Berlin, GermanyJPK00518
BD Microlance 3 18GBD304622
bovine serum albuminGibcoA10008-01
Cantilever All-In-One-AleTl, Budget Sensors, Sofia, BulgariaAIO-TL-10tip A, k ¼ 0.2 N/m
C-chip disposable hemocytometerNanoEnTek631-1098
centrifuge: Rotina 420RHettich Zentrifugen
Collagenase, Type I, powderGibco17100-017
Dulbecco’s Modified Eagle’s Medium - low glucoseSigmaD5546
Feather disposable scalpel (No. 10)Feather02.001.30.010
fetal bovine serum (FBS)SigmaF7524
HEPES sodium salt solution (1 M)SigmaH3662
Inverted phase contrast microscope (Integrated with AFM)AxioObserver D1, Carl Zeiss Microscopy, Jena, GermanyL201306_03
laboratory bagsBrand759705
Leibovitz's L-15 medium without l-glutamineMerckF1315
Leibovitz's L-15 medium without L-glutamine(Merck KGaA, Darmstadt, Germany)F1315
L-glutamineLonzaBE 17-605C1200 mM
LIVE/DEADTM Viability/Cytotoxicity KitInvitrogen by Thermo Fisher ScientificL3224Calcein AM and EthD-1 are used from this kit.
Microscope software: Zen 2.6Zeiss
Microscope: AxioVertA.1Zeiss
Nelaton-Catheter femaleBicakcilar19512051
Penicillin-StreptomycinGibco15140-12210000 U/ml Penicillin
10000 µg/ml Streptomycin
Petri dish heater associated with AFMBrukerT-05-0117
Petri dish heater associated with AFMJPK Instruments AG, Berlin, GermanyT-05-0117
Phosphate buffered saline (PBS)Gibco10010-015
Statistical Software: SPSS Statistics 22IBM
Sterile Petri dish - CellStarGreiner BioOne664160
Tissue culture dishesTPP AGTPP93040
Tissue culture dishesTPP Techno Plastic Products AG, Trasadingen, SwitzerlandTPP93040
Trypan Blue 0.4%
0.85% NaCl
Lonza17-942E
Trypsin-EDTA solutionSigmaT3924
Waterjet: ERBEJET2 deviceErbe Elektromedizin GmbH
Williams Cystoscopic Injection NeedleCook MedicalG1422023G, 5.0 Fr, 35 cm

References

  1. Milsom, I., et al. Global prevalence and economic burden of urgency urinary incontinence: a systematic review. European Urology. 65 (1), 79-95 (2014).
  2. Lee, J. Y., et al.

Explore More Articles

Porcine Adipose TissueStromal CellsWaterjet TechnologyInjectionUrinary IncontinenceRegenerationMuscle TissueHeart AttackCell TherapyMinimally InvasiveCell DensityCell LabelingCell ViabilityTrypan Blue

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved