Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The present protocol provides instructional information for using tobacco hornworm Manduca sexta in cannabinoid research. The method described here includes all necessary supplies and protocols to monitor physiological and behavioral changes of the insect model in response to cannabidiol (CBD) treatment.

Abstract

With increased attention on cannabinoids in medicine, several mammalian model organisms have been used to elucidate their unknown pharmaceutical functions. However, many difficulties remain in mammalian research, which necessitates the development of non-mammalian model organisms for cannabinoid research. The authors suggest the tobacco hornworm Manduca sexta as a novel insect model system. This protocol provides information on preparing the artificial diet with varying amounts of cannabidiol (CBD), setting up a cultivation environment, and monitoring their physiological and behavioral changes in response to CBD treatment. Briefly, upon receiving hornworm eggs, the eggs were allowed 1-3 days at 25 °C on a 12:12 light-dark cycle to hatch before being randomly distributed into control (wheat germ-based artificial diet; AD), vehicle (AD + 0.1% medium-chain triglyceride oil; MCT oil) and treatment groups (AD + 0.1% MCT + 1 mM or 2 mM of CBD). Once the media was prepared, 1st instar larvae were individually placed in a 50 mL test tube with a wooden skewer stick, and then the test tube was covered with a cheesecloth. Measurements were taken in 2-day intervals for physiological and behavioral responses to the CBD administration. This simple cultivation procedure allows researchers to test large specimens in a given experiment. Additionally, the relatively short life cycles enable researchers to study the impact of cannabinoid treatments over multiple generations of a homogenous population, allowing for data to support an experimental design in higher mammalian model organisms.

Introduction

Over the past years, public attention has been centered on cannabinoids due to their therapeutic potential, including the treatment of epilepsy1, Parkinson's disease2, multiple sclerosis3, and various forms of cancer4,5,6 with cannabidiol (CBD). Since Cannabis is legalized as an agricultural commodity in the Agricultural Improvement Act of 2018, Public Law 115-334 (the 2018 Farm Bill), Cannabis and its cannabinoid derivatives in the food, cosmetic, and pharmaceutical industries have ....

Protocol

1. Hornworm preparation and cannabidiol treatment

  1. Obtain 150-200 viable M. sexta eggs and wheat germ-based artificial diets (see Table of Materials).
  2. Place the hornworm eggs in a polystyrene Petri dish with a wheat germ-based artificial diet (AD) layer and transfer the eggs to an insect rearing chamber (see Table of Materials) maintained at 25 °C with 40%-60% relative humidity.
  3. Allow tobacco hornworm eggs for 1-3 day.......

Representative Results

Manduca sexta as a model system to examine cannabinoids toxicity
Figure 1 depicts the key components of the CBD experiment using tobacco hornworm Manduca sexta. Large numbers of insects (>20) were individually reared at 25 °C on a 12 h:12 h = light: dark cycle. The insects' size, weight, and mortality were measured at 2-day intervals to monitor for short-and long-term responses after high-dose CBD (2 mM) treatment.

Discussion

The feeding study demonstrated that high doses of CBD (2 mM) inhibited the insect's growth and increased mortality31. The insect model also showed sensitivity to ethanol; however, CBD effectively detoxicated the ethanol toxicity, increasing their survival rate, diet consumption, and food searching behaviors to similar levels to the control group (Figure 3A,B)31. The described insect model system is composed of three critica.......

Acknowledgements

This research was supported by the Institute of Cannabis Research at Colorado State University-Pueblo and the Ministry of Science and ICT (2021-DD-UP-0379), and Chuncheon city (Hemp R&D and industrialization, 2020-2021).

....

Materials

NameCompanyCatalog NumberComments
Analytic balanceMettler Instrument Corp.AE100S
Cannabidiol isolate (>99.4%)Lilu's Garden
CheeseclothVWR INTERNATIONAL470150-438
Corning 50mL clear polypropylene (PP) centrifuge tubesVWR89093-192
Ethyl Alcohol, 200 ProofSigma-AldrichEX0276-1
Fear conditioning chamberCoulbourn Instruments
Insect rearing chamberDarwin ChambersINR034
Medium chain triglycerides (MCT) oilWalmart
Motion detection software (Actimetrics)Coulbourn Instruments
Polystyrene petri dish (120 mm x 120 mm x 17mm)VWR INTERNATIONAL688161
Tobacco hormworm artificial dietCarolina Biological Supply CompanyItem # 143908Ready-To-Use-Hornworm-Diet
Tobacco hormworm eggsCarolina Biological Supply CompanyItem # 143880Unit of 30-50

References

  1. Kaplan, J. S., Stella, N., Catterall, W. A., Westenbroek, R. E. Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. Proceedings of the National Academy of Sciences of the United States of America. 114 (42), 11229-11234 (2017).
  2. Leehey, M. A., et al.

Explore More Articles

Tobacco HornwormInsect Model SystemCannabinoidPreclinical StudiesCannabidiolLarval GrowthDiet ConsumptionLarval Mobility

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved