A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The present protocol provides instructional information for using tobacco hornworm Manduca sexta in cannabinoid research. The method described here includes all necessary supplies and protocols to monitor physiological and behavioral changes of the insect model in response to cannabidiol (CBD) treatment.
With increased attention on cannabinoids in medicine, several mammalian model organisms have been used to elucidate their unknown pharmaceutical functions. However, many difficulties remain in mammalian research, which necessitates the development of non-mammalian model organisms for cannabinoid research. The authors suggest the tobacco hornworm Manduca sexta as a novel insect model system. This protocol provides information on preparing the artificial diet with varying amounts of cannabidiol (CBD), setting up a cultivation environment, and monitoring their physiological and behavioral changes in response to CBD treatment. Briefly, upon receiving hornworm eggs, the eggs were allowed 1-3 days at 25 °C on a 12:12 light-dark cycle to hatch before being randomly distributed into control (wheat germ-based artificial diet; AD), vehicle (AD + 0.1% medium-chain triglyceride oil; MCT oil) and treatment groups (AD + 0.1% MCT + 1 mM or 2 mM of CBD). Once the media was prepared, 1st instar larvae were individually placed in a 50 mL test tube with a wooden skewer stick, and then the test tube was covered with a cheesecloth. Measurements were taken in 2-day intervals for physiological and behavioral responses to the CBD administration. This simple cultivation procedure allows researchers to test large specimens in a given experiment. Additionally, the relatively short life cycles enable researchers to study the impact of cannabinoid treatments over multiple generations of a homogenous population, allowing for data to support an experimental design in higher mammalian model organisms.
Over the past years, public attention has been centered on cannabinoids due to their therapeutic potential, including the treatment of epilepsy1, Parkinson's disease2, multiple sclerosis3, and various forms of cancer4,5,6 with cannabidiol (CBD). Since Cannabis is legalized as an agricultural commodity in the Agricultural Improvement Act of 2018, Public Law 115-334 (the 2018 Farm Bill), Cannabis and its cannabinoid derivatives in the food, cosmetic, and pharmaceutical industries have exponentially increased. Additionally, clinical-grade isolates of single cannabinoids and cannabinoid mixtures have been successfully tested in human subjects7, cell lines5,8, and diverse animal model systems9,10.
A clinical trial would be ideal for validating the efficacy and adverse effects of cannabinoids on a specific disease. However, there are numerous challenges in clinical trials, including ethical/IRB approval, recruitment, and retention of the subjects11. To overcome these hurdles, various human cell lines were used because human-derived cell lines are cost-effective, easy to handle, can bypass the ethical issues, and provide consistent and reproducible results as the cell lines are a 'pure population of cells that have no cross-contamination of other cells and chemicals'12.
Alves et al. (2021)13 tested CBD in a dose-dependent manner in the placental trophoblasts, which are specialized cells of the placenta that play an essential role in embryo implantation and interaction with the decidualized maternal uterus14. Their results showed that CBD caused cell viability loss, cell cycle progression disruption, and apoptosis induction. These observations demonstrate the potential negative impacts of Cannabis use by pregnant women13. Likewise, a series of cell lines were also used to examine the pharmacological effects of CBD in human diseases, in particular, various forms of cancer. The in vitro studies successfully demonstrated anti-cancer effects in pancreatic15, breast8, and colorectal cancer cells16. However, while being widely available and easy to handle, specific cell lines such as HeLa, HEK293 are prone to genetic and phenotypic changes due to alterations in their growth conditions or handling17.
In Cannabis research, various animal model systems, ranging from small animals such as mouse18, guinea-pig19, and rabbit19 to large animals such as canine20, piglet21, monkey22, horse23, have been used to explore unknown therapeutic effects. Mice have been the most preferred animal model system for cannabinoid research due to their anatomical, physiological, and genetic similarity to humans24. Most significantly, mice have CB1/2 receptors in their nervous system, which are present in humans. They also have a shorter life cycle than human subjects, with easier maintenance and abundant genetic resources, thus making it much easier to monitor the effects of cannabinoids throughout an entire life cycle. The mammalian system is widely used and has successfully demonstrated that CBD relieves seizure disorders1, post-traumatic stress disorder9, oral ulcers25, and dementia-like symptoms10. The mouse model has also enabled a social interaction study of individuals within a community which is extremely difficult in large animals and humans26.
Despite all the advantages of the animal model system, it is still costly and requires intensive care during drug administration and data collection. Additionally, there is scrutiny of using mice in research because of irreproducibility and poor recapitulation of human conditions due to limitations in experimental design and rigor27.
With the increasing demand for medical/preclinical studies of cannabinoids, a non-mammalian model system is needed. Invertebrate models traditionally conferred distinctive benefits over vertebrate models. The significant benefits include the ease and low cost of rearing many specimens and enabling researchers to monitor multiple generations of genetically homogeneous populations28. A recent study proved the fruit fly, Drosophila melanogaster, to be an effective insect model system to investigate pharmacological functions of cannabinoids in modulating feeding behaviors29. Among the insect model systems, the authors focused on the tobacco hornworm, Manduca sexta, also known as Carolina sphinx moth or hawk moth, as a novel insect model system for cannabinoid research.
Manduca sexta belongs to the family of Sphingidae. The insect is the most common plant pest in the southern United States, where they feed on solanaceous plants. The insect model has a long history in research in insect physiology, biochemistry, neurobiology, and drug interaction studies. Manduca sexta's research portfolio includes a draft genome sequence, allowing for a molecular-level understanding of essential cellular processes30. Another crucial benefit of this model system is its large size, reaching more than 100 mm in length and 10 g in weight in the 18-25 days of larval development. The large size enables researchers to easily monitor morphological and behavioral changes in real-time in response to the CBD treatment. Also, due to the size, electrophysiological responses were examined with the abdominal nervous system, including ganglia dissected from the larvae without high-resolution microscope settings. The unique feature allows researchers to readily investigate acute and long-term responses to the administered cannabinoid(s).
Despite such versatility, M. sexta has only recently been explored for its suitability as an experimental model for Cannabis and cannabinoid studies. In 2019, the authors used the insect model system for the first time to address the hypothesis that Cannabis has evolved to produce Cannabidiol to protect itself from insect herbivores30,31. The result clearly showed that the plants exploited CBD as a feeding deterrent and inhibited the growth of the pest insect M. sexta caterpillar, as well as causing increased mortality31. The study also demonstrated the rescuing effects of CBD to intoxicated ethanol larvae, identifying the potential vehicle effect of ethanol as a carrier of the CBD. As shown, the insect model system effectively investigated the therapeutic effects of cannabinoids within 3-4 weeks with less labor and costs than other animal systems. Although the insect model lacks cannabinoid receptors (i.e., no CB1/2 receptors), the model system provides a valuable tool to understand the pharmacological roles of cannabinoids through a cannabinoid receptor-independent manner.
The authors of this study have previously worked with the tobacco hornworm as a model system for cannabinoid research31. After careful consideration of the benefits and risks of using M. sexta, we have provided a method involving the proper care and preparation of diet for preclinical trials that allow for opportunities for future preclinical laboratory use.
Access restricted. Please log in or start a trial to view this content.
1. Hornworm preparation and cannabidiol treatment
2. M. sexta larval growth, diet consumption, and mortality measurements
3. Statistical analysis
Access restricted. Please log in or start a trial to view this content.
Manduca sexta as a model system to examine cannabinoids toxicity
Figure 1 depicts the key components of the CBD experiment using tobacco hornworm Manduca sexta. Large numbers of insects (>20) were individually reared at 25 °C on a 12 h:12 h = light: dark cycle. The insects' size, weight, and mortality were measured at 2-day intervals to monitor for short-and long-term responses after high-dose CBD (2 mM) treatment.
Access restricted. Please log in or start a trial to view this content.
The feeding study demonstrated that high doses of CBD (2 mM) inhibited the insect's growth and increased mortality31. The insect model also showed sensitivity to ethanol; however, CBD effectively detoxicated the ethanol toxicity, increasing their survival rate, diet consumption, and food searching behaviors to similar levels to the control group (Figure 3A,B)31. The described insect model system is composed of three critica...
Access restricted. Please log in or start a trial to view this content.
The authors have no conflicts of interest.
This research was supported by the Institute of Cannabis Research at Colorado State University-Pueblo and the Ministry of Science and ICT (2021-DD-UP-0379), and Chuncheon city (Hemp R&D and industrialization, 2020-2021).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Analytic balance | Mettler Instrument Corp. | AE100S | |
Cannabidiol isolate (>99.4%) | Lilu's Garden | ||
Cheesecloth | VWR INTERNATIONAL | 470150-438 | |
Corning 50mL clear polypropylene (PP) centrifuge tubes | VWR | 89093-192 | |
Ethyl Alcohol, 200 Proof | Sigma-Aldrich | EX0276-1 | |
Fear conditioning chamber | Coulbourn Instruments | ||
Insect rearing chamber | Darwin Chambers | INR034 | |
Medium chain triglycerides (MCT) oil | Walmart | ||
Motion detection software (Actimetrics) | Coulbourn Instruments | ||
Polystyrene petri dish (120 mm x 120 mm x 17mm) | VWR INTERNATIONAL | 688161 | |
Tobacco hormworm artificial diet | Carolina Biological Supply Company | Item # 143908 | Ready-To-Use-Hornworm-Diet |
Tobacco hormworm eggs | Carolina Biological Supply Company | Item # 143880 | Unit of 30-50 |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved