A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we describe the construction of null mutants of Aeromonas in specific glycosyltransferases or regions containing glycosyltransferases, the motility assays, and flagella purification performed to establish the involvement and function of their encoded enzymes in the biosynthesis of a glycan, as well as the role of this glycan in bacterial pathogenesis.
The study of glycosylation in prokaryotes is a rapidly growing area. Bacteria harbor different glycosylated structures on their surface whose glycans constitute a strain-specific barcode. The associated glycans show higher diversity in sugar composition and structure than those of eukaryotes and are important in bacterial-host recognition processes and interaction with the environment. In pathogenic bacteria, glycoproteins have been involved in different stages of the infectious process, and glycan modifications can interfere with specific functions of glycoproteins. However, despite the advances made in the understanding of glycan composition, structure, and biosynthesis pathways, understanding of the role of glycoproteins in pathogenicity or interaction with the environment remains very limited. Furthermore, in some bacteria, the enzymes required for protein glycosylation are shared with other polysaccharide biosynthetic pathways, such as lipopolysaccharide and capsule biosynthetic pathways. The functional importance of glycosylation has been elucidated in several bacteria through mutation of specific genes thought to be involved in the glycosylation process and the study of its impact on the expression of the target glycoprotein and the modifying glycan. Mesophilic Aeromonas have a single and O-glycosylated polar flagellum. Flagellar glycans show diversity in carbohydrate composition and chain length between Aeromonas strains. However, all strains analyzed to date show a pseudaminic acid derivative as the linking sugar that modifies serine or threonine residues. The pseudaminic acid derivative is required for polar flagella assembly, and its loss has an impact on adhesion, biofilm formation, and colonization. The protocol detailed in this article describes how the construction of null mutants can be used to understand the involvement of genes or genome regions containing putative glycosyltransferases in the biosynthesis of a flagellar glycan. This includes the potential to understand the function of the glycosyltransferases involved and the role of the glycan. This will be achieved by comparing the glycan deficient mutant to the wild-type strain.
Protein glycosylation has been described in both Gram-positive and Gram-negative bacteria and consists of the covalent attachment of a glycan to an amino acid side chain1,2. In prokaryotes, this process usually occurs via two major enzymatic mechanisms: O- and N-glycosylation3. In O-glycosylation, the glycan is attached to the hydroxyl group of a serine (Ser) or threonine (Thr) residue. In N-glycosylation, the glycan is attached to the side chain amide nitrogen of an asparagine (Asn) residue within the tripeptide sequences Asn-X-Ser/Thr, wher....
The schematic representation of the procedure is shown in Figure 1.
1. Bioinformatic identification of flagella glycosylation island (FGIs) in Aeromonas
This methodology provides an effective system to generate null mutants in genes or chromosomal regions of Aeromonas that can affect flagella glycosylation and the role of flagella filament (Figure 1).
The protocol starts with the bioinformatic identification of putative FGIs and the genes encoding GTs presents in this region. In Aeromonas, the chromosomal location of FGIs is based on the detection of three types of genes: genes involved in the bi.......
The critical early step of this method is the identification of regions involved in the glycosylation of flagella and putative GTs because these enzymes show high homology and are involved in many processes. Bioinformatic analysis of Aeromonas genomes in public databases shows that this region is adjacent to the polar flagella region 2, which contains the flagellin genes in many strains and contains genes involved in the biosynthesis of pseudaminic acid27. This has made it possible to dev.......
This work was supported by the National Research Council Canada, for the Plan Nacional de I + D (Ministerio de Economía y Competitividad, Spain) and for the Generalitat de Catalunya (Centre de Referència en Biotecnologia).
....Name | Company | Catalog Number | Comments |
ABI PRISM Big Dye Terminator v. 3.1 Cycle Sequencing Ready Reaction Kit | Applied Biosystems | 4337455 | Used for sequencing |
AccuPrime Taq DNA Polymerase, high fidelity | Invitrogen | 12346-086 | Used for amplification of AB, CD and AD fragments |
Agarose | Conda-Pronadise | 8008 | Used for DNA electrophoresis |
Alkaline phosphatase, calf intestinal (CIAP) | Promega | M1821 | Used to remove phosphate at the 5’ end |
Bacto agar | Becton Dickinson | 214010 | Use for motility analysis |
BamHI | Promega | R6021 | Used for endonuclease restriction |
BglII | Promega | R6081 | Used for endonuclease restriction |
BioDoc-It Imagin System | UVP | Bio-imaging station used for DNA visualization | |
Biotaq polymerase | Bioline | BIO-21040 | Used for colony screening |
Cesium chloride | Applichem | A1126,0100 | Used for flagella purification |
Chloramphenicol | Applichem | A1806,0025 | Used for triparental mating |
Cytiva illustra GFX PCR DNA and Gel Band Purification Kit | Cytivia | 28-9034-71 | Used for purification of PCR amplicons and DNA fragments. |
EDTA | Applichem | 131026.1211 | Used for DNA electrophoresis |
Electroporation cuvettes 2 mm gap | VWR | 732-1133 | Used for transformation |
Ethidium bromide | Applichem | A1152,0025 | Use for DNA visualization |
HyperLadder 1 Kb marker | Bioline | BIO-33053 | DNA marker |
Invitrogen Easy-DNA gDNA Purification Kit | Invitrogen | 10750204 | Used for bacterial chromosomal DNA purification |
Luria-Bertani (LB) Miller agar | Condalab | 996 | Used for Escherichia coli culture |
Luria-Bertani (LB) Miller broth | Condalab | 1551 | Used for Escherichia coli culture |
Nanodrop ND-1000 | NanoDrop Techonologies Inc | Spectrophotometer used for DNA quantification | |
Rifampicin | Applichem | A2220,0005 | Used for triparental mating |
SOC Medium | Invitrogen | 15544034 | Used for electroporation recovery |
Spectinomycin | Applichem | A3834,0005 | Used for triparental mating |
SW 41 Ti Swinging-Bucket Rotor | Beckman | 331362 | Used for flagella purification |
T4 DNA ligase | Invitrogen | 15224017 | Used for ligation reaction |
Trypticasein soy agar | Condalab | 1068 | Used for Aeromonas grown |
Trypticasein soy broth | Condalab | 1224 | Used for Aeromonas grown |
Tryptone | Condalab | 1612 | Use for motility analysis |
Tris | Applichem | A2264,0500 | Used for DNA electrophoresis and flagella purification |
Triton X-100 | Applichem | A4975,0100 | Used for bacterial lysis |
Ultra Clear tubes (14 mm x 89 mm) | Beckman | 344059 | Used for flagella purification |
Veriti 96 well Thermal Cycler | Applied Biosystems | Used for PCR reactions | |
Zyppy Plasmid Miniprep II Kit | Zymmo research | D4020 | Used for isolation of plasmid DNA |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved