A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We present a model of neonatal intraventricular hemorrhage using rat pups that mimics the pathology seen in humans.
Neonatal intraventricular hemorrhage (IVH) is a common consequence of premature birth and leads to brain injury, posthemorrhagic hydrocephalus (PHH), and lifelong neurological deficits. While PHH can be treated by temporary and permanent cerebrospinal fluid (CSF) diversion procedures (ventricular reservoir and ventriculoperitoneal shunt, respectively), there are no pharmacological strategies to prevent or treat IVH-induced brain injury and hydrocephalus. Animal models are needed to better understand the pathophysiology of IVH and test pharmacological treatments. While there are existing models of neonatal IVH, those that reliably result in hydrocephalus are often limited by the necessity for large-volume injections, which may complicate modeling of the pathology or introduce variability in the clinical phenotype observed.
Recent clinical studies have implicated hemoglobin and ferritin in causing ventricular enlargement after IVH. Here, we develop a straightforward animal model that mimics the clinical phenotype of PHH utilizing small-volume intraventricular injections of the blood breakdown product hemoglobin. In addition to reliably inducing ventricular enlargement and hydrocephalus, this model results in white matter injury, inflammation, and immune cell infiltration in periventricular and white matter regions. This paper describes this clinically relevant, simple method for modeling IVH-PHH in neonatal rats using intraventricular injection and presents methods for quantifying ventricle size post injection.
Neonatal IVH originates from the germinal matrix, a site of rapid cell division that is adjacent to the lateral ventricles of the developing brain. This highly vascular structure is vulnerable to hemodynamic instability related to premature birth. Blood is released into the lateral ventricles in germinal matrix hemorrhage (GMH)-IVH when fragile blood vessels within the germinal matrix rupture. In the case of grade IV IVH, periventricular hemorrhagic infarction may also contribute to the release of blood products within the brain.1 The combination of GMH-IVH may cause PHH, particularly after high-grade hemorrhage (grades III and IV)1. PHH can be treated with the placement of a ventriculoperitoneal shunt, but shunt placement does not reverse the brain injury that may occur from IVH. Although modern neonatal intensive care has lowered rates of IVH2, 3, there are no specific treatments for the brain injury or hydrocephalus caused by IVH once it has occurred. A significant limitation in developing preventative treatments for IVH-induced brain injury and PHH is the incomplete understanding of IVH pathophysiology.
Recently, early CSF levels of key blood breakdown product hemoglobin have been shown to be associated with the later development of PHH in neonates with high-grade IVH4. Furthermore, CSF levels of iron-handling pathway proteins—hemoglobin, ferritin, and bilirubin—are associated with ventricle size in neonatal IVH. This was also shown in a multicenter cohort of infants with preterm PHH, where higher ventricular CSF levels of ferritin were associated with larger ventricle size5.
In this study, we developed a clinically relevant model of IVH-induced brain injury and hydrocephalus utilizing hemoglobin injection into the brain ventricles, which allows for quantification of brain injury and PHH and the testing of new therapeutic strategies (Figure 1)6, 7. This IVH model utilizes neonatal rat pups, which are placed under general anesthesia for the duration of the procedure. A midline incision is made on the scalp, and coordinates derived from skull landmarks—the bregma or lambda—are used to target the lateral ventricles for injection. Slow injection using an infusion pump delivers hemoglobin into the ventricle. This protocol is easy to use, versatile, and can model different components of IVH that result in PHH.
NOTE: All animal protocols were approved by the institutions' Animal Care and Use Committee. See the Table of Materials for details about all materials, reagents, equipment, and software used in this protocol.
1. Preparation of hemoglobin and CSF solutions
2. Preparation of the animal for injection
3. Setting up the stereotactic injector
4. Animal injection
5. Postoperative care
6. MRI acquisition and quantification
7. Image processing and analysis
The success of injection was confirmed by radiologic and immunohistochemical means. Animals that underwent hemoglobin injection developed moderate acute ventriculomegaly when assessed via MRI (Figure 2A), with significantly larger lateral ventricles at 24 h and 72 h post hemoglobin injection compared to aCSF-injected animals (Figure 2B,C). While there was no significant difference in lateral ventricle volume between hemoglobin-injected and ...
This IVH model utilizing hemoglobin injection allows for the study of the pathology of IVH specifically mediated by hemoglobin. For complementary studies, hemoglobin can also be easily delivered in vitro and does not confound biochemical assays for proteins made by microglia/macrophages that are present in whole blood.
The leading theories of IVH-PHH include the mechanical obstruction of CSF circulation, the disruption of cilia lining the ependymal walls, inflammation, fibrosis, and i...
The authors declare that they have no conflicts of interest.
JMS received funding from NIH/NINDS R01 NS110793 and K12 (Neurosurgeon Research Career Development Program). BAM received funding from NIH/NINDS K08 NS112580-01A1, University of Kentucky Neuroscience Research Priority Area Award, and a Hydrocephalus Association Innovator Award.
Name | Company | Catalog Number | Comments |
0.3 mL insulin syringe | BD Microfine + Insulin Syringe | 230-4533 | 0.3-0.5 mL synringes will work |
1.5 mL microtube | USA Scientific | 1615-5500 | Lot No. K194642H -3 511 |
4.7T MRI | Agilent/Varian | 4.7T/33 cm | Agilent/Varian DirectDrive 4.7-T (200-MHz) MRI system |
6-0 monofilament suture | ETHICON | 667G | |
9.4T MRI | Bruker | BioSpec 94/20 | Used in this protocol without the cryoprobe |
Analytical balance | CCURIS Instruments | W3200-320 | |
Artificial CSF (aCSF) | Tocris Bioscience | 3525 | Batch No: 72A |
Betadine | Purdue Products L.P. | 301005-00 | NDC 67618-150-09 |
Carprofen (injectable) | Zoetis Inc. | PI 4019448 | Rimadyl |
Ethanol | Decon Laboratories | 2701 | |
Heating pad | Sunbeam | E12107-819 | UL 612A, Z-1228-001 |
Hemoglobin | MP Biomedicals | 100714 | LOT NO. SR02321 |
Isoflurane | Piramal Critical Care | NDC 66794-017-25 | |
Isoflurane vaporizer | VETEQUIP | 911103 | |
Light for stereotactic insturment | Dolan-Jenner industries | Fiber-Lite MI-150 | |
Microinjection syringe pump | World Precision Instruments | MICRO21 | Serial 184034 T08K |
MRI software | Bruker BioSpin | Paravision 360 3.2 | |
Oxygen | Airgas Healthcare | UN1072 | LOT NUMBER S1432080XA02 |
Sprague Dawley rats | Charles River Laboratories | Strain code: 001 | |
Stereotactic instrument | KOPF Instuments | Model 900LS Lazy Susan | |
Sterile cotton tipped applicator | Fischerbrand | 23-400-118 | |
Surgical blade | covetrus | #10 | |
Topical triple antibiotic | Triple Antibiotic Ointment | NDC 51672-2120-1 | |
Ventricle volume quantification software | ITK-SNAP | ITK-SNAP 4.0.0 beta |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved