A subscription to JoVE is required to view this content. Sign in or start your free trial.
We present here a protocol on how to prepare primary cultures of glial cells, astrocytes, and microglia from rat cortices for time-lapse video imaging of intracellular Ca2+ for research on pathophysiology of amyotrophic lateral sclerosis in the hSOD1G93A rat model.
This protocol demonstrates how to prepare primary cultures of glial cells, astrocytes, and microglia from the cortices of Sprague Dawley rats and how to use these cells for the purpose of studying the pathophysiology of amyotrophic lateral sclerosis (ALS) in the rat hSOD1G93A model. First, the protocol shows how to isolate and culture astrocytes and microglia from postnatal rat cortices, and then how to characterize and test these cultures for purity by immunocytochemistry using the glial fibrillary acidic protein (GFAP) marker of astrocytes and the ionized calcium-binding adaptor molecule 1 (Iba1) microglial marker. In the next stage, methods are described for dye-loading (calcium-sensitive Fluo 4-AM) of cultured cells and the recordings of Ca2+ changes in video imaging experiments on live cells.
The examples of video recordings consist of: (1) cases of Ca2+ imaging of cultured astrocytes acutely exposed to immunoglobulin G (IgG) isolated from ALS patients, showing a characteristic and specific response compared to the response to ATP as demonstrated in the same experiment. Examples also show a more pronounced transient rise in intracellular calcium concentration evoked by ALS IgG in hSOD1G93A astrocytes compared to non-transgenic controls; (2) Ca2+ imaging of cultured astrocytes during a depletion of calcium stores by thapsigargin (Thg), a non-competitive inhibitor of the endoplasmic reticulum Ca2+ ATPase, followed by store-operated calcium entry elicited by the addition of calcium in the recording solution, which demonstrates the difference between Ca2+ store operation in hSOD1G93A and in non-transgenic astrocytes; (3) Ca2+ imaging of the cultured microglia showing predominantly a lack of response to ALS IgG, whereas ATP application elicited a Ca2+ change. This paper also emphasizes possible caveats and cautions regarding critical cell density and purity of cultures, choosing the correct concentration of the Ca2+ dye and dye-loading techniques.
Cell culture techniques have given rise to numerous advancements in diverse fields of cellular neurophysiology in health and disease. Particularly, primary cell cultures, freshly isolated from the neuronal tissue of a lab animal, allow the experimenter to closely study the behavior of diverse cells in different biochemical media and physiological setups. Using different fluorescent physiological indicators such as the Ca2+-sensitive dyes in combination with time-lapse video microscopy provides better insight into the cellular biophysical and biochemical processes in real time.
ALS is a devastating neurodegenerative disease that a....
All experiments were performed in accordance with the EU directives on the protection of animals for scientific purposes and with permission from the Ethical Commission of the Faculty of Biology, University of Belgrade (approval number EK-BF-2016/08). Regarding patient material (sera for IgGs), it was collected for routine clinical examination with informed patient's consent in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans. The protocol .......
Characterization of different glial cell types in culture
It usually takes 15-21 days to produce astrocytes for experiments, while microglial cells take 10-15 days to grow. Immunostaining was performed to assess the cell purity of the culture. Figure 1 shows the expression of double labeling of the astrocytic marker GFAP and the microglial marker Iba1 in respective cultures.
Calcium imaging is known to reveal the differences in cell physiolo.......
This paper presents the method of primary cell culturing as a fast and "on the budget" tool for studying different aspects of cell (patho)physiology such as ALS in the rat hSOD1G93A model. The technique is thus suitable for studies at the single-cell level that can be extrapolated and further investigated at a higher level of organization (i.e., in tissue slices or in a live animal). Cell culturing as a technique, however, has a few caveats. It is most critical to do the brain tissue isolation and the .......
This work was supported by the Ministry of Education Science and Technological Development Republic of Serbia Contract No. 451-03-9/2021-14/ 200178, the FENS - NENS Education and Training Cluster project "Trilateral Course on Glia in Neuroinflammation", and the EC H2020 MSCA RISE grant #778405. We thank Marija Adžić and Mina Perić for supplying the immunohistochemistry images and Danijela Bataveljić for help with paper writing.
....Name | Company | Catalog Number | Comments |
15 mL tube | Sarstedt, Germany | 62 554 502 | |
2 mL tube | Sarstedt, Germany | 72.691 | |
21 G needle | Nipro, Japan | HN-2138-ET | |
23 G needle | Nipro, Japan | HN-2338-ET | |
5 mL syringe | Nipro, Japan | SY3-5SC-EC | |
6 mm circular glass coverslip | Menzel Glasser, Germany | 630-2113 | |
60 mm Petri dish | ThermoFisher Sientific, USA | 130181 | |
ATP | Sigma-Aldrich, Germany | A9062 | |
AxioObserver A1 | Carl Zeiss, Germany | ||
Bovine serum albumine | Sigma-Aldrich, Germany | B6917 | |
Calcium chloride | Sigma-Aldrich, Germany | 2110 | |
Centrifuge | Eppendorf, Germany | ||
DAPI | Sigma-Aldrich, Germany | 10236276001 | |
D-glucose | Sigma-Aldrich, Germany | 158968 | |
DMEM | Sigma-Aldrich, Germany | D5648 | |
Donkey-anti goat AlexaFluor 647 IgG antibody | Invitrogen, USA | A-21447 | |
Donkey-anti mouse AlexaFluor 488 IgG antibody | Invitrogen, USA | A-21202 | |
EDTA | Sigma-Aldrich, Germany | EDS-100G | |
EGTA | Sigma-Aldrich, Germany | E4378 | |
”evolve”-EM 512 Digital Camera System | Photometrics, USA | ||
Fetal bovine serum (FBS) | Gibco, ThermoFisher Scientific, USA | 10500064 | |
Fiji ImageJ Software | Open source under the GNU General Public Licence | ||
FITC filter set | Chroma Technology Inc., USA | ||
Fluo-4 AM | Molecular Probes, USA | F14201 | |
Goat anti-Iba1 | Fujifilm Wako Chemicals, USA | 011-27991 | |
HEPES | Biowest, France | P5455 | |
HighSpeed Solution Exchange System | ALA Scientific Instruments, USA | ||
Incubator | Memmert GmbH + Co. KG, Germany | ||
Magnesium chloride | Sigma-Aldrich, Germany | M2393 | |
Matlab software | Math Works, USA | ||
Mouse anti-GFAP | Merck Millipore, USA | MAB360 | |
Mowiol 40-88 | Sigma-Aldrich, Germany | 324590 | |
Normal donkey serum | Sigma-Aldrich, Germany | D9663 | |
Paraformaldehyde | Sigma-Aldrich, Germany | 158127 | |
Penicilin and Streptomycin | ThermoFisher Sientific, USA | 15140122 | |
Poly-L-lysine | Sigma-Aldrich, Germany | P5899 | |
Potassium chloride | Sigma-Aldrich, Germany | P5405 | |
Potassium dihydrogen phosphate | Carlo Erba Reagents, Spain | 471686 | |
Shaker DELFIA PlateShake | PerkinElmer Life Sciencies, USA | ||
Sodium bicarbonate | Sigma-Aldrich, Germany | S3817 | |
Sodium chloride | Sigma-Aldrich, Germany | S5886 | |
Sodium phosphate dibasic heptahydrate | Carl ROTH GmbH | X987.2 | |
Sodium pyruvate | Sigma-Aldrich, Germany | P5280 | |
Thapsigargine | Tocris Bioscience, UK | 1138 | |
Triton X - 100 | Sigma-Aldrich, Germany | T8787 | |
Trypsin | Sigma-Aldrich, Germany | T4799 | |
Vapro Vapor Pressure Osmometer 5520 | Wescor, ELITechGroup Inc., USA | ||
ViiFluor Imaging System | Visitron System Gmbh, Germany | ||
VisiChrome Polychromator System | Visitron System Gmbh, Germany | ||
VisiView high performance setup | Visitron System Gmbh, Germany | ||
Xenon Short Arc lamp | Ushio, Japan |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved