A subscription to JoVE is required to view this content. Sign in or start your free trial.
Müller glia primary cultures obtained from mouse retinas represent a very robust and reliable tool to study the glial conversion into retinal progenitor cells after microRNA treatment. Single molecules or combinations can be tested before their subsequent application of in vivo approaches.
Müller glia (MG) are the predominant glia in the neural retina and can function as a regenerative source for retinal neurons. In lower vertebrates such as fish, MG-driven regeneration occurs naturally; in mammals, however, stimulation with certain factors or genetic/epigenetic manipulation is required. Since MG comprise only 5% of the retinal cell population, there is a need for model systems that allow the study of this cell population exclusively. One of these model systems is primary MG cultures that are reproducible and can be used for a variety of applications, including molecule/factor screening and identification, testing of compounds or factors, cell monitoring, and/or functional tests. This model is used to study the potential of murine MG to convert into retinal neurons after supplementation or inhibition of microRNAs (miRNAs) via transfection of artificial miRNAs or their inhibitors. The use of MG-specific reporter mice in combination with immunofluorescent labeling and single-cell RNA sequencing (scRNA-seq) confirmed that 80%-90% of the cells found in these cultures are MG. Using this model, it was discovered that miRNAs can reprogram MG into retinal progenitor cells (RPCs), which subsequently differentiate into neuronal-like cells. The advantages of this technique are that miRNA candidates can be tested for their efficiency and outcome before their usage in in vivo applications.
The Müller glia (MG) are the predominant glia in the neural retina. They have similar functions compared to other glia in other parts of the central nervous system such as maintaining the water and ion homeostasis, nourishing neurons, and protecting the tissue. MG have another fascinating feature: although they are mature glia, they still express many genes expressed in retinal progenitor cells (RPCs) during late development1,2. This resemblance is assumed to be the reason for the naturally occurring MG-based neuronal regeneration in the fish retina after retinal damage3,
Procedures involving animal subjects have been approved by the Institutional Animal Care and Use Committee (IACUC) at SUNY College of Optometry.
NOTE: This culture protocol consists of three phases: growth, transfection, and conversion phase. A summary of the overall protocol with the timeline is given in Figure 1.
1. Preparation of media and all required reagents
NOTE: All steps need to be car.......
This protocol describes how to grow MG from P12 mouse retinas and how to reprogram these cells with miR-25 into retinal neurons using the Ascl1CreERT:tdTomatoSTOPfl/fl RPC reporter mouse. This method was used in previous work reporting in detail other suitable miRNAs (mimics or inhibitors, as single molecules or in combination) to reprogram MG into RPC that then adopt neuronal cell characteristics27. This method has been modified to grow cultures faster and thus mini.......
This protocol describes how to grow MG from dissociated mouse retinas for reprogramming studies using miRNAs. As shown and confirmed in a variety of previous studies, the vast majority (80%-90%) of cells found in these cultures are MG20,23,24. This method is a very robust and reliable technique and results can be easily reproduced if the protocol is followed correctly21,27
The authors thank Dr. Ann Beaton and all lab members for their input on the manuscript. Special thanks go to Drs. Tom Reh, Julia Pollak, and Russ Taylor for introducing MG primary cultures as a screening tool to S.G.W. during postdoctoral training at the University of Washington in Seattle. The study was funded by the Empire Innovation Program (EIP) Grant to S.G.W. and start-up funds from SUNY Optometry to S.G.W., as well as the R01EY032532 award from the National Eye Institute (NEI) to S.G.W.
....Name | Company | Catalog Number | Comments |
Animals | |||
Ascl1-CreERT mouse Ascl1tm1.1(Cre/ERT2)Jejo/J | Jax laboratories | #012882 | Ascl1-CreERT mice were crossed with tdTomato mice |
tdTomato-STOPfl/fl mouse B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J | Jax laboratories | #007914 | Genotyping is requried to identify Ascl1CreER positive mice |
Reagents | |||
(Z)-4-Hydroxytamoxifen, ≥98% Z isomer | Sigma-Aldrich | H7904-5MG | reconstituted in ethanol, frozen aliquots |
16 % Paraformaldehyde (PFA) aqueous solution | VWR | 100504-782 | 2% PFA made with Phosphate-buffered saline (PBS), frozen aliquots |
Alexa Fluor 488 - AffiniPure F(ab')2 Fragment Donkey Anti-Rabbit IgG (H+L) | Jackson ImmunoResearch Laboratories | 711-546-152 | dilution 1:500 |
Alexa Fluor 647 - AffiniPure F(ab')2 Fragment Donkey Anti-Goat IgG (H+L) | Jackson ImmunoResearch Laboratories | 705-606-147 | dilution 1:500 |
Anti-human Otx2 Antibody, R&D Systems | Fisher Scientific | AF1979 | dilution 1:500 |
Anti-rabbit MAP2 antibody | Sigma-Aldrich | M9942-200UL | dilution 1:250 |
Anti-Red Fluorescent Protein (RFP) antibody | Antibodies-Online | ABIN334653 | dilution 1:500 |
Ascorbic Acid | STEMCELL Technologies | 72132 | reconstituted in PBS, frozen aliquots |
B-27 Supplement | Fisher Scientific | 17-504-044 | frozen aliquots |
Brain Phys Neuronal Medium | STEMCELL Technologies | 05790 | used as neuronal medium in section 1.2, store at 4 °C (https://cdn.stemcell.com/media/files/pis/10000000225-PIS_02.pdf?_ga=2.153046205.562651831. 1643231638-1407032920.163831 5521&_gac=1.124727416.1643 231640.Cj0KCQiA_8OPBhDtAR IsAKQu0gbfxhGZMTOU9mHFY dHNsuLirnQzunvMEuS9wA08uY -26yfSbGvNhHEaArodEALw_wcB) |
Click-iT EdU Alexa Fluor 647 Imaging Kit | Fisher Scientific | C10340 | reconstitute following manual, 4°C |
Dibutyryl-cAMP | STEMCELL Technologies | 73886 | reconstituted in Dimethyl sulfoxide (DMSO), frozen aliquots |
Dimethyl Sulfoxide (DMSO) | Fisher Scientific | MT-25950CQC | |
Fetal Bovine Serum (FBS) | Fisher Scientific | MT35010CV | frozen aliquots |
Gibco Opti-MEM Reduced Serum Medium, GlutaMAX Supplement | Fisher Scientific | 51-985-034 | store at 4 °C |
Gibco TrypLE Express Enzyme (1X), phenol red | Fisher Scientific | 12-605-028 | used as solution containing trypsin, store at 4 °C |
HBSS | Fisher Scientific | 14-025-134 | store at 4 °C |
Laminin mouse protein, natural | Fisher Scientific | 23-017-015 |
frozen aliquots, (https://cdn.stemcell.com/media/files/pis/10000000225-PIS_02.pdf?_ga=2.153046205.562651831. |
L-Glutamine | Fisher Scientific | 25-030-081 | frozen aliquots |
miRIDIAN microRNA Mimic Negative Control | Horizon | CN-001000-01-50 | reconstituted in RNase free water (200 µM), frozen aliquots |
miRIDIAN microRNA Mouse mmu-miR-25-3p mimic | Horizon | C-310564-05-0050 | reconstituted in RNase free water (200 µM), frozen aliquots |
N-2 Supplement | Fisher Scientific | 17-502-048 | frozen aliquots |
Neurobasal Medium | Fisher Scientific | 21-103-049 | used for growth medium in section 1.1, store at 4 °C |
Papain Dissociation System | Worthington Biochemical | LK003153 | reconstituted in Earle's Balanced Salt Solution, frozen aliquots |
Penicillin Streptomycin | Fisher Scientific | 15-140-122 | frozen aliquots |
Phosphate-buffered saline (PBS) | Fisher Scientific | 20-012-043 | |
Poly-L-ornithine hydrobromide | Sigma-Aldrich | P4538-50MG | reconstituted in steriled water, frozen aliquots |
Recombinant Human BDNF Protein | R&D Systems | 248-BDB-050/CF | reconstituted in steriled PBS and FBS, frozen aliquots |
Recombinant Mouse EGF Protein | Fisher Scientific | 2028EG200 | reconstituted in steriled PBS, frozen aliquots |
Recombinant Rat GDNF Protein | Fisher Scientific | 512GF010 | reconstituted in steriled PBS, frozen aliquots |
Rhodamine Red 570 - AffiniPure F(ab')2 Fragment Donkey Anti-Rat IgG (H+L) | Jackson ImmunoResearch Laboratories | 712-296-150 | dilution 1:1,000 |
Slide Mounting Medium | Fisher Scientific | OB100-01 | |
Transfection Reagent (Lipofectamine 3000) | Fisher Scientific | L3000015 | store at 4 °C |
plasticware/supplies | |||
0.6 mL microcentrifuge tube | Fisher Scientific | 50-408-120 | |
1.5 mL microcentrifuge tube | Fisher Scientific | 50-408-129 | |
10 µL TIP sterile filter Pipette Tips | Fisher Scientific | 02-707-439 | |
100 µL TIP sterile filter Pipette Tips | Fisher Scientific | 02-707-431 | |
1000 µL TIP sterile filter Pipette Tips | Fisher Scientific | 02-707-404 | |
2.0 mL microcentrifuge tube | Fisher Scientific | 50-408-138 | |
20 µL TIP sterile filter Pipette Tips | Fisher Scientific | 02-707-432 | |
Adjustable-Volume Pipettes (2.5, 10, 20, 100, 200, & 1000 µL) | Eppendorf | 2231300008 | |
Disposable Transfer Pipets | Fisher Scientific | 13-669-12 | |
Multiwell Flat-Bottom Plates with Lids, No. of Wells=12 | Fisher Scientific | 08-772-29 | |
Multiwell Flat-Bottom Plates with Lids, No. of Wells=24 | Fisher Scientific | 08-772-1 | |
PIPET sterile filter 10ML Disposable Serological Pipets | Fisher Scientific | 13-676-10J | |
PIPET sterile filter 50ML Disposable Serological Pipets | Fisher Scientific | 13-676-10Q | |
PIPET sterile filter 5ML Disposable Serological Pipets | Fisher Scientific | 13-676-10H | |
Powder-Free Nitrile Exam Gloves | Fisher Scientific | 19-130-1597B | |
Round coverslips (12 mm diameter, 0.17 - 0.25 mm thickness) | Fisher Scientific | 22293232 | |
Vacuum Filter, Pore Size=0.22 µm | Fisher Scientific | 09-761-106 | |
equipment | |||
1300 B2 Biosafety cabinet | Thermo Scientific | 1310 | |
All-in-one Fluorescence Microscope Keyence BZ-X 810 | Keyence | 9011800000 | |
Binocular Zoom Stereo Microscope | Vision Scientific | VS-1EZ-IFR07 | |
Disposable Petri Dishes (100 mm diameter) | VWR | 25384-088 | |
Dumont #5 Forceps - Biologie/Titanium | Fine Science Tools | 11252-40 | |
Dumont #55 Forceps - Biologie/Inox | Fine Science Tools | 11255-20 | |
Dumont #7 curved Forceps - Biologie/Titanium | Fine Science Tools | 11272-40 | |
Eppendorf Centrifuge 5430 R | Eppendorf | 2231000508 | |
Fine Scissors-sharp | Fine Science Tools | 14058-11 | |
McPherson-Vannas Scissors, 8 cm | World Precision Instruments | 14124 | |
Metal bead bath | Lab Armor | 74309-714 | |
Nutating Mixer, Electrical=115V, 60Hz, Speed=24 rpm | VWR | 82007-202 | |
Silicone coated dissection Petri Dish (90 mm diameter) | Living Systems Instrumentation | DD-ECON-90-BLK-5PK | |
Tweezers, economy #5 | World Precision Instruments | 501979 | |
Water Jacketed CO2 Incubator | VWR | 10810-744 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved