A subscription to JoVE is required to view this content. Sign in or start your free trial.
Post-translational modifications (PTMs) change protein structures and functions. Methods for the simultaneous enrichment of multiple PTM types can maximize coverage in analyses. We present a protocol using dual-functional Ti(IV)-immobilized metal affinity chromatography followed by mass spectrometry for the simultaneous enrichment and analysis of protein N-glycosylation and phosphorylation in pancreatic tissues.
Mass spectrometry can provide deep coverage of post-translational modifications (PTMs), although enrichment of these modifications from complex biological matrices is often necessary due to their low stoichiometry in comparison to non-modified analytes. Most enrichment workflows of PTMs on peptides in bottom-up proteomics workflows, where proteins are enzymatically digested before the resulting peptides are analyzed, only enrich one type of modification. It is the entire complement of PTMs, however, that leads to biological functions, and enrichment of a single type of PTM may miss such crosstalk of PTMs. PTM crosstalk has been observed between protein glycosylation and phosphorylation, the two most common PTMs in human proteins and also the two most studied PTMs using mass spectrometry workflows. Using the simultaneous enrichment strategy described herein, both PTMs are enriched from post-mortem human pancreatic tissue, a complex biological matrix. Dual-functional Ti(IV)-immobilized metal affinity chromatography is used to separate various forms of glycosylation and phosphorylation simultaneously in multiple fractions in a convenient spin tip-based method, allowing downstream analyses of potential PTM crosstalk interactions. This enrichment workflow for glyco- and phosphopeptides can be applied to various sample types to achieve deep profiling of multiple PTMs and identify potential target molecules for future studies.
Protein post-translational modifications (PTMs) play a major role in modulating protein structures and consequently their functions and downstream biological processes. The diversity of the human proteome increases exponentially due to the combinatorial variability afforded by various PTMs. Different variants of proteins from their canonical sequences as predicted by the genome are known as proteoforms, and many proteoforms arise from PTMs1. Studying proteoform diversity in health and disease has become an area of research of great interest in recent years2,3.
Consent was obtained for the use of pancreatic tissues for research from the deceased's next of kin and an authorization by the University of Wisconsin-Madison Health Sciences Institutional Review Board was obtained. IRB oversight is not required because it does not involve human subjects as recognized by 45 CFR 46.102(f).
CAUTION: Care should be taken when handling the reagents used in this protocol, which include acids (formic, acetic, trifluoroacetic), bases (ammonium hydroxide), and cr.......
Representative mass spectrometry data, including raw files and search results, have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD03306522.
In this work, duplicate injection replicates were analyzed for each enrichment elution. Identifications made from both technical replicates were collated in the final analysis. Due to the semi-stochastic nature of data-dependent acquisition in picking peptid.......
The dual-functional Ti(IV)-IMAC strategy is useful for the simultaneous analysis of N-glycopeptides and phosphopeptides from the same sample in a single sample preparation workflow. ERLIC-based methods have also been shown to perform simultaneous enrichment of PTMs. Both strategies have been used previously for deep coverage in PTM analyses14,18. In adapting the dual Ti method to decreasing sample incubation time by using spin-tips, we hope that this protocol has.......
This research was supported in part by grant funding from the NIH (R01DK071801, RF1AG052324, P01CA250972, and R21AG065728), and Juvenile Diabetes Research Foundation (1-PNF-2016-250-S-B and SRA-2016-168-S-B). Data presented here were also in part obtained through support from an NIH/NCATS UL1TR002373 award through the University of Wisconsin Institute for Clinical and Translational Research. The Orbitrap instruments were purchased through the support of an NIH shared instrument grant (NIH-NCRR S10RR029531) and Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin-Madison. We would also like to acknowledge the generous support....
Name | Company | Catalog Number | Comments |
Acetic Acid, Glacial (Certified ACS) | Fisher Scientific | A38S-500 | |
Acetone (Certified ACS) | Fisher Scientific | A18-1 | |
Acetonitrile, Optima LC/MS Grade | Fisher Scientific | A955-4 | |
Ammonium Acetate (Crystalline/Certified ACS) | Fisher Scientific | A637-500 | |
Ammonium Hydroxide (Certified ACS Plus) | Fisher Scientific | A669-212 | |
Byonic software | Protein Metrics | n/a | Commercial software used for glycoproteomic analysis (https://proteinmetrics.com/byos/) |
C18 BEH material | Waters | 186002353 | Material removed from column and used to pack nano capillaries (pulledto integrate tip used directly in line with instrument inlet) |
CAE-Ti-IMAC, 100% | J&K Scientific | 2749380-1G | Material used for dual-functional Ti(IV)-IMAC; can also be used for conventional IMAC/conventional phosphopeptide enrichment |
Cellcrusher kit | Cellcrusher | n/a | Used for grinding tissue samples into powder before extraction |
Eppendorf 5424R Microcentrifuge | Fisher Scientific | 05-401-205 | For temperature-controlled centrifugation |
cOmplete protease inhibitor cocktail tablets | Sigma | 11697498001 | |
DTT, Molecular Grade (DL-Dithiothreitol) | Promega | V3151 | Protein reducing agent |
Ethanol, 200 proof (100%), USP | Fisher | 22-032-601 | |
Fisherbrand Analog Vortex Mixer | Fisher Scientific | 02-215-414 | |
Fisherbrand Low-Retention Microcentrifuge Tubes (1.5 mL) | Fisher Scientific | 02-681-320 | |
Fisherbrand Low-Retention Microcentrifuge Tubes (2 mL) | Fisher Scientific | 02-681-321 | |
Fisherbrand Model 120 Sonic Dismembrator | Fisher Scientific | FB120110 | For sample lysis using ultrasonication |
Formic Acid, 99.0+%, Optima LC/MS Grade | Fisher Scientific | A117-50 | |
Fused silica capillary (75 μm inner diameter, 360 μm outer diameter) | Polymicro Technologies LLC | 100 m TSP075375 | For in-house pulled and packed columns with integrated emitter |
Hydrofluoric acid (48 wt. % in H2O) | Sigma-Aldrich | 339261-100ML | Used for opening emitter of pulled capillary column |
Iodoacetamide, BioUltra | Sigma | I1149-5G | Protein reducing reagent |
MaxQuant software | n/a | n/a | Free software used for phosphoproteomic analysis (https://www.maxquant.org/) |
Multi-therm Shaker with heating and cooling | Benchmark Scientific | H5000-HC | Heating block |
Oasis HLB 1 cc Vac Cartridge, 10 mg Sorbent per Cartridge, 30 µm, 100/pk | Waters | 186000383 | Larger-scale cartridge desalting for tryptic digests (loading capacity approximately up to 1 mg each) |
OMIX C18 pipette tips, 100 µL tip, 10 - 100 μL elution volume, 1 x 96 tips | Agilent | A57003100 | Smaller-scale packed pipette tip for desalting for enrichment elutions |
P-2000 Micropipette Puller | Sutter Instrument Co. | P-2000/F | For pulling nano-capillary columns for LC-MS |
PhosSTOP phosphatase inhibitor tablets | Sigma | 4906845001 | |
Pierce BCA Protein Assay Kit | Thermo Fisher Scientific | 23225 | |
Pierce Quantitative Colorimetric Peptide Assay | Thermo Fisher Scientific | 23275 | |
PolySAX LP (12 μm, pore size 300 Å) | PolyLC | BMSX1203 | Material for strong anion-exchange chromatography used for ERLIC/conventional glycopeptide enrichment |
Potassium Phosphate Monobasic (Crystalline/Certified ACS) | Fisher Scientific | P285-500 | |
Pressure injection cell with integrated magnetic stirplate | Next Advance | PC77-MAG | For packing nano-capillary columns with stationary phase up to 2500 psi limit |
Proteome Discoverer software | Thermo Fisher Scientific | n/a | Commercial software for proteomics anaysis (with integrated database searching software nodes) and data visualization (https://www.thermofisher.com/us/en/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-analysis/proteome-discoverer-software.html) |
SpeedVac SC110 Vacuum Concentrator Model SC110-120 | Savant | n/a | Centrifugal vacuum concentrator for drying samples (under heat) |
SDS Solution, 10% Sodium Dodecyl Sulfate Solution, Molecular Biology/Electrophoresis | Fisher Scientific | BP2436200 | |
Sequencing Grade Modified Trypsin | Promega | V5111 | |
Sodium Chloride (Crystalline/Certified ACS) | Fisher Scientific | S271-500 | |
TopTip, Empty, 10-200 µL, Pack of 96 | Glygen Corporation | TT2EMT.96 | Empty pipette tip with micron-sized hole used that can be used to pack chromatographic materials for enrichments, bundled with tube adapters |
Triethylammonium bicarbonate buffer (TEAB, 1 M, pH 8.5 (volatile)) | Sigma | 90360-100ML | |
Trifluoroacetic acid, Reagent Grade, 99% | Fisher Scientific | 60-017-61 | |
Tris Base (White Crystals or Crystalline Powder/Molecular Biology) | Fisher Scientific | BP152-500 | |
Trypsin/Lys-C Mix, Mass Spec Grade | Promega | V5071 | |
Urea (Certified ACS) | Fisher Scientific | U15-500 | |
Water, Optima LC/MS Grade | Fisher Scientific | W64 |
Explore More Articles
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved