Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Post-translational modifications (PTMs) change protein structures and functions. Methods for the simultaneous enrichment of multiple PTM types can maximize coverage in analyses. We present a protocol using dual-functional Ti(IV)-immobilized metal affinity chromatography followed by mass spectrometry for the simultaneous enrichment and analysis of protein N-glycosylation and phosphorylation in pancreatic tissues.

Abstract

Mass spectrometry can provide deep coverage of post-translational modifications (PTMs), although enrichment of these modifications from complex biological matrices is often necessary due to their low stoichiometry in comparison to non-modified analytes. Most enrichment workflows of PTMs on peptides in bottom-up proteomics workflows, where proteins are enzymatically digested before the resulting peptides are analyzed, only enrich one type of modification. It is the entire complement of PTMs, however, that leads to biological functions, and enrichment of a single type of PTM may miss such crosstalk of PTMs. PTM crosstalk has been observed between protein glycosylation and phosphorylation, the two most common PTMs in human proteins and also the two most studied PTMs using mass spectrometry workflows. Using the simultaneous enrichment strategy described herein, both PTMs are enriched from post-mortem human pancreatic tissue, a complex biological matrix. Dual-functional Ti(IV)-immobilized metal affinity chromatography is used to separate various forms of glycosylation and phosphorylation simultaneously in multiple fractions in a convenient spin tip-based method, allowing downstream analyses of potential PTM crosstalk interactions. This enrichment workflow for glyco- and phosphopeptides can be applied to various sample types to achieve deep profiling of multiple PTMs and identify potential target molecules for future studies.

Introduction

Protein post-translational modifications (PTMs) play a major role in modulating protein structures and consequently their functions and downstream biological processes. The diversity of the human proteome increases exponentially due to the combinatorial variability afforded by various PTMs. Different variants of proteins from their canonical sequences as predicted by the genome are known as proteoforms, and many proteoforms arise from PTMs1. Studying proteoform diversity in health and disease has become an area of research of great interest in recent years2,3.

Protocol

Consent was obtained for the use of pancreatic tissues for research from the deceased's next of kin and an authorization by the University of Wisconsin-Madison Health Sciences Institutional Review Board was obtained. IRB oversight is not required because it does not involve human subjects as recognized by 45 CFR 46.102(f).

CAUTION: Care should be taken when handling the reagents used in this protocol, which include acids (formic, acetic, trifluoroacetic), bases (ammonium hydroxide), and cr.......

Representative Results

Representative mass spectrometry data, including raw files and search results, have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD03306522.

In this work, duplicate injection replicates were analyzed for each enrichment elution. Identifications made from both technical replicates were collated in the final analysis. Due to the semi-stochastic nature of data-dependent acquisition in picking peptid.......

Discussion

The dual-functional Ti(IV)-IMAC strategy is useful for the simultaneous analysis of N-glycopeptides and phosphopeptides from the same sample in a single sample preparation workflow. ERLIC-based methods have also been shown to perform simultaneous enrichment of PTMs. Both strategies have been used previously for deep coverage in PTM analyses14,18. In adapting the dual Ti method to decreasing sample incubation time by using spin-tips, we hope that this protocol has.......

Acknowledgements

This research was supported in part by grant funding from the NIH (R01DK071801, RF1AG052324, P01CA250972, and R21AG065728), and Juvenile Diabetes Research Foundation (1-PNF-2016-250-S-B and SRA-2016-168-S-B). Data presented here were also in part obtained through support from an NIH/NCATS UL1TR002373 award through the University of Wisconsin Institute for Clinical and Translational Research. The Orbitrap instruments were purchased through the support of an NIH shared instrument grant (NIH-NCRR S10RR029531) and Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin-Madison. We would also like to acknowledge the generous support....

Materials

NameCompanyCatalog NumberComments
Acetic Acid, Glacial (Certified ACS)Fisher ScientificA38S-500
Acetone (Certified ACS)Fisher ScientificA18-1
Acetonitrile, Optima LC/MS GradeFisher ScientificA955-4
Ammonium Acetate (Crystalline/Certified ACS)Fisher ScientificA637-500
Ammonium Hydroxide (Certified ACS Plus)Fisher ScientificA669-212
Byonic softwareProtein Metricsn/aCommercial software used for glycoproteomic analysis (https://proteinmetrics.com/byos/)
C18 BEH materialWaters186002353Material removed from column and used to pack nano capillaries (pulledto integrate tip used directly in line with instrument inlet)
CAE-Ti-IMAC, 100%J&K Scientific2749380-1GMaterial used for dual-functional Ti(IV)-IMAC; can also be used for conventional IMAC/conventional phosphopeptide enrichment
Cellcrusher kitCellcrushern/aUsed for grinding tissue samples into powder before extraction
Eppendorf 5424R MicrocentrifugeFisher Scientific05-401-205For temperature-controlled centrifugation
cOmplete protease inhibitor cocktail tabletsSigma11697498001
DTT, Molecular Grade (DL-Dithiothreitol)PromegaV3151Protein reducing agent
Ethanol, 200 proof (100%), USPFisher22-032-601
Fisherbrand Analog Vortex MixerFisher Scientific02-215-414
Fisherbrand Low-Retention Microcentrifuge Tubes (1.5 mL)Fisher Scientific02-681-320
Fisherbrand Low-Retention Microcentrifuge Tubes (2 mL)Fisher Scientific02-681-321
Fisherbrand Model 120 Sonic DismembratorFisher ScientificFB120110For sample lysis using ultrasonication
Formic Acid, 99.0+%, Optima LC/MS GradeFisher ScientificA117-50
Fused silica capillary (75 μm inner diameter, 360 μm outer diameter)Polymicro Technologies LLC100 m TSP075375For in-house pulled and packed columns with integrated emitter
Hydrofluoric acid (48 wt. % in H2O)Sigma-Aldrich339261-100MLUsed for opening emitter of pulled capillary column
Iodoacetamide, BioUltraSigmaI1149-5GProtein reducing reagent
MaxQuant softwaren/an/aFree software used for phosphoproteomic analysis (https://www.maxquant.org/)
Multi-therm Shaker with heating and coolingBenchmark ScientificH5000-HCHeating block
Oasis HLB 1 cc Vac Cartridge, 10 mg Sorbent per Cartridge, 30 µm, 100/pkWaters186000383Larger-scale cartridge desalting for tryptic digests (loading capacity approximately up to 1 mg each)
OMIX C18 pipette tips, 100 µL tip, 10 - 100 μL elution volume, 1 x 96 tipsAgilentA57003100Smaller-scale packed pipette tip for desalting for enrichment elutions
P-2000 Micropipette PullerSutter Instrument Co.P-2000/FFor pulling nano-capillary columns for LC-MS
PhosSTOP phosphatase inhibitor tabletsSigma4906845001
Pierce BCA Protein Assay KitThermo Fisher Scientific23225
Pierce Quantitative Colorimetric Peptide AssayThermo Fisher Scientific23275
PolySAX LP (12 μm, pore size 300 Å)PolyLCBMSX1203Material for strong anion-exchange chromatography used for ERLIC/conventional glycopeptide enrichment
Potassium Phosphate Monobasic (Crystalline/Certified ACS)Fisher ScientificP285-500
Pressure injection cell with integrated magnetic stirplateNext AdvancePC77-MAGFor packing nano-capillary columns with stationary phase up to 2500 psi limit
Proteome Discoverer softwareThermo Fisher Scientificn/aCommercial software for proteomics anaysis (with integrated database searching software nodes) and data visualization (https://www.thermofisher.com/us/en/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-analysis/proteome-discoverer-software.html)
SpeedVac SC110 Vacuum Concentrator Model SC110-120Savantn/aCentrifugal vacuum concentrator for drying samples (under heat)
SDS Solution, 10% Sodium Dodecyl Sulfate Solution, Molecular Biology/ElectrophoresisFisher ScientificBP2436200
Sequencing Grade Modified TrypsinPromegaV5111
Sodium Chloride (Crystalline/Certified ACS)Fisher ScientificS271-500
TopTip, Empty, 10-200 µL, Pack of 96Glygen CorporationTT2EMT.96Empty pipette tip with micron-sized hole used that can be used to pack chromatographic materials for enrichments, bundled with tube adapters
Triethylammonium bicarbonate buffer (TEAB, 1 M, pH 8.5 (volatile))Sigma90360-100ML
Trifluoroacetic acid, Reagent Grade, 99%Fisher Scientific60-017-61
Tris Base (White Crystals or Crystalline Powder/Molecular Biology)Fisher ScientificBP152-500
Trypsin/Lys-C Mix, Mass Spec GradePromegaV5071
Urea (Certified ACS)Fisher ScientificU15-500
Water, Optima LC/MS GradeFisher ScientificW64

References

  1. Smith, L. M., Kelleher, N. L. Proteoform: a single term describing protein complexity. Nature Methods. 10 (3), 186-187 (2013).
  2. Pan, S., Brentnall, T. A., Chen, R. Glycoproteins and glycoproteomics in pancreatic cancer.

Explore More Articles

N glycopeptidesPhosphopeptidesTitanium Immobilized Metal Affinity ChromatographyDual functional EnrichmentSimultaneous AnalysisPancreatic TissuesDisease Biomarker DiscoveryDiabetesCancerSpin TipsCentrifugationTissue PulverizationLysis BufferProtease InhibitorPhosphatase InhibitorSonicationMass Spectrometry Analysis

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved