Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The present protocol describes an experimental platform to assess the effects of mechanical and biochemical cues on chemotherapeutic responses of patient-derived glioblastoma cells in 3D matrix-mimetic cultures using a custom-made UV illumination device facilitating high-throughput photocrosslinking of hydrogels with tunable mechanical features.

Abstract

Cell-matrix interactions mediate complex physiological processes through biochemical, mechanical, and geometrical cues, influencing pathological changes and therapeutic responses. Accounting for matrix effects earlier in the drug development pipeline is expected to increase the likelihood of clinical success of novel therapeutics. Biomaterial-based strategies recapitulating specific tissue microenvironments in 3D cell culture exist but integrating these with the 2D culture methods primarily used for drug screening has been challenging. Thus, the protocol presented here details the development of methods for 3D culture within miniaturized biomaterial matrices in a multi-well plate format to facilitate integration with existing drug screening pipelines and conventional assays for cell viability. Since the matrix features critical for preserving clinically relevant phenotypes in cultured cells are expected to be highly tissue- and disease-specific, combinatorial screening of matrix parameters will be necessary to identify appropriate conditions for specific applications. The methods described here use a miniaturized culture format to assess cancer cell responses to orthogonal variation of matrix mechanics and ligand presentation. Specifically, this study demonstrates the use of this platform to investigate the effects of matrix parameters on the responses of patient-derived glioblastoma (GBM) cells to chemotherapy.

Introduction

The expected cost of developing a new drug has steadily risen over the past decade, with over $1 billion in current estimates1. Part of this expense is the high failure rate of drugs entering clinical trials. Approximately 12% of drug candidates ultimately earn approval from the United States (US) Food & Drug Administration (FDA) in 2019. Many drugs fail in Phase I due to unanticipated toxicity2, while others that pass safety trials may fail due to a lack of efficacy3. This attrition due to non-efficacy can partly be explained by the fact that cancer models used during drug development are not....

Protocol

Patient-derived GBM cell lines (GS122 and GS304) were provided by Professor David Nathanson (our collaborator), who developed these lines under a protocol approved by the UCLA Institutional Review Board (IRB# 10-000655). Cells were provided de-identified so that the cell lines could not be linked back to the individual patients.

1. Preparation of hydrogel solution

  1. Prepare HEPES-buffered solution by dissolving HEPES powder at 20 mM in Hank's balanced salt soluti.......

Representative Results

AFM measurements confirmed precise control of hydrogel mechanics as a function of UV irradiance (mW/cm2) during photo-crosslinking using a custom-built, Arduino-controlled LED array (Figure 2A). The hydrogel formulation used in this protocol can be found in Table 2. The spacing of the LEDs on the provided template matches the spacing for every other well of a 384-well plate, allowing for the formation of gels inside the plate (Figure 2B

Discussion

The current work presents methods to generate 3D, miniaturized cultures within HA-based while simultaneously altering matrix stiffness and peptides available for integrin engagement. This technique enables the systematic study of how matrix parameters affect cellular phenotypes (e.g., the viability of cancer cells exposed to chemotherapy) with increased throughput. Previous approaches, including that presented herein, have tuned hydrogel stiffness by varying the percent total polymer in the final formulation, where stiff.......

Acknowledgements

The authors would like to specifically acknowledge Carolyn Kim, Amelia Lao, Ryan Stoutamore, and Itay Solomon for their contributions to earlier iterations of the photogelation scheme. Cell lines GS122 and GS304 were generously provided by David Nathanson. All figures were created with BioRender.com. UCLA core facilities, the Molecular Screening Shared Resources, and the Nano and Pico Characterization Laboratory were instrumental to the work. Chen Chia-Chun was supported by the UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research Training Program. Grigor Varuzhanyan was supported by a Tumor Cell Biology Training Program NIH Grant (T32 CA 00....

Materials

NameCompanyCatalog NumberComments
1.1 kOhm resistors, 6 WDigikey35601k1ft
1.7 mL microcentrifuge tubeGenesse Scientific21-108
15 mL conical tubeFisher Scientific14-959-70C
365 nm LEDDigikeyltpl-c034uvh365
384 well plateBio Greiner One781090
40 µm cell strainerMTC bioC4040
4-Armed thiol terminated polyethlene glycol (20 kDa)Laysan Bio4arm-PEG-SH-20K-1g
6 NPN BJTsDigikey2n5550ta
80 Ohm resistors, 0.125 WDigikeyerjj-6enf80r6v
8-Armed norbornene terminated polyethylene glycol (20 kDa)Jenkem TechnologyA7025-1
AccutaseInnovative Cell TechnologiesAT104500 cell dissociation  reagent
AFM ProbesNovascan0.01 N/m Nominal spring constant, 2.5 µm SiO2 particle
Arduino IDEArduino1.8.19
Arduino NanoMakerfireMini Nano V3.0 ATmega328P Microcontroller Board
bFGFPeprotech100-18B20 ng/mL
CCK8Abcamab228554
CentrifugeThermoscientificsorvall legend xtr
CP100STGilsonF148415Pipette tips for positive displacement pipette
Cubis Semi-Micro BalanceSartoriusMSA225S100DI
DMEM - F12 (50-50)Life Technologies113300571x
DMSOFisher ScientificBP231-100
DPBS Ca (-) Mg (-)Genesse Scientific25-508
EGFPeprotechAF100-1550 ng/mL
Ethanol, AnhydrousFisher ScientificA405PAdd DI water to dilute to 70%
Fisherbrand Class B Amber Glass threaded vialsFisher Scientific03-339-23C
Fisherbrand Weighing PaperFisher Scientific09-898-12B
G21 SupplementGemini Bio400-16050x
Hanks Balanced Salt SolutionThermo Fisher Scientific14175095
HCl, ACS, 12MSigma AldrichS25838AAdd DI water to dilute to 1 M
Heparin sodium salt from porcine intestinal mucosaSigma AldrichH3149-100Ku25 µg/mL
HEPESSigma AldrichH7006-100G
Hot Air GunWagnerHT1000
Integrin-binding sialoprotein (IBSP) peptideGenscriptCustom OrderGCGYGGGGNGEPRGDTYRAY
Lithium phenyl-2,4,6 trimethylbenzoylphosphinate (LAP) , >95%Sigma Aldrich900889-1G
Magnetic stir plateThermo ScientificSP194715
MicrocentrifugeThermo ScientificSorvall legend micro 21R
Microman E single Channel PipettorGilsonFD10004Positive displacement pipette
Micropipette TipsVarious ManufactursVarious sizes
mLine micropipetteSartorious
N-acetyl CysteineSigma AldrichA7250-10G
Nanowizard 4BrukerAFM microscope
NaOHFisher Scientificss255-1Add DI water to dilute to 1 M
NormoicinInvivogenant-nr-1500x
Osteopontin PeptideGenscriptCustom OrderGCGYGTVDVPDGRGDSLAYG
Pipet AidDrummond4000102
Plain Microscope SlidesGlobe Scientific1301
Press-To-Seal silicone Isolator, 12-4.5mm diam x 2mm deepGrace Bio Labs664201-ACut so that 8 individual molds are made from a single sheet
ProcessingProcessing3.5.4
Repeater M4Eppendorf4982000322
Repeater Pipette TipsSartorious300894301 mL sizes
RGD PeptideGenscriptGCGYGRGDSPG
Scoth Tape
Serological PipettesGenesse Scientific12-102,12-1045,10 mL Pipettes
Solder PasteDigikey315-NC191LT15T5-ND
Solder Wire
Straight dissecting forcepsVWR Scientific82027-408
Synergy H1 Plate ReaderBiotek
T-75 Cell Culture Treated FlaskGenesee Scientific25-209
TemozolomideSigma AldrichT2577Typically used from 10 µM to 100 µM
Tenascin-C PeptideGenscriptGCGYGRSTDLPGLKAATHYTITIR
GV
Thiolated Hyaluronic Acid (700 kDa), 6-8% modifiedLifecore BiomedicalHA700K5
VWR Spinbar, Flea MicroVWR58948-375

References

  1. Scannell, J. W., Blanckley, A., Boldon, H., Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nature Reviews Drug Discovery. 11 (3), 191-200 (2012).
  2. Waring, M. J., et al. An analysis of ....

Explore More Articles

3D Tumor ModelsHydrogel ArraysHigh throughput ScreeningMatrix ComponentsTherapeuticsGBM CellsTissue mimetic MatricesDrug ResistanceHEPES buffered SolutionThiolated Hyaluronic AcidPEG NorbornenePEG ThiolCysteine thiol containing PeptidesUV LED Illumination

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved