Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The present protocol describes a simple procedure to acquire and analyze the topography of epicranial visual evoked potentials with 32-multichannel thin-film electrodes in the mouse.

Abstract

Visual evoked potentials (VEP) allow the characterization of visual function in preclinical mouse models. Various methods exist to measure VEPs in mice, from non-invasive EEG, subcutaneous single-electrodes, and ECoG to fully invasive intracortical multichannel visual cortex recordings. It can be useful to acquire a global, topographical EEG-level characterization of visual responses previous to local intracortical microelectrode measurements in acute experimental settings. For example, one use case is to assess global cross-modal changes in VEP topography in deafness models before studying its effects on a local intracortical level. Multichannel epicranial EEG is a robust method to acquire such an overview measure of cortical visual activity. Multichannel epicranial EEG provides comparable results through a standardized, consistent approach to, for example, identify cross-modal, pathological, or age-related changes in cortical visual function. The current study presents a method to obtain the topographical distribution of flash-evoked VEPs with a 32-channel thin-film EEG electrode array in anesthetized mice. Combined with analysis in the time and frequency domain, this approach allows fast characterization and screening of the topography and basic visual properties of mouse cortical visual function, which can be combined with various acute experimental settings.

Introduction

Mice are a preclinical model of degenerative processes of vision and ophthalmological diseases1,2,3,4. Visual evoked potentials (VEPs) are commonly used to measure cortical visual function and, for example, to assess visual degeneration in pathological models5,6. The VEP latency, conduction time, amplitude, multifocal characteristics, or spatial acuity of cortical visual evoked potentials provide diagnostic information on the functional integrity of the visual s....

Protocol

All animals were handled and housed according to German (TierSchG, BGBl. I S. 1206, 1313) and European Union (ETS 123; Directive 2010/63/EU) guidelines for animal research. The animal experiments were approved by German state authorities (Lower Saxony State Office for Consumer Protection and Food Safety, LAVES) and were monitored by the university animal welfare officer. A 3-month-old male C57BL/6J mouse was used for the present study.

1. Animal details

  1. Perform the.......

Representative Results

Recording visual evoked potentials with multichannel EEG allows the assessment of the topography of VEP amplitudes, latencies, or frequency components in mice. Figure 2A shows an example of a flash evoked VEP topography recorded with an epicranial 32-channel EEG from a 3-month-old male C57BL/6J mouse. The strongest visual evoked activity occurs in the occipital region above the visual cortex.

Figure 2B shows the voltage distribution o.......

Discussion

This article describes a method for recording epi-cranial multichannel EEG with thin-film electrodes and how to acquire a consistent topographical representation of visual evoked potentials in the mouse. Here, we exemplarily showed binocular flash stimulation, but this approach can also be applied with other types of visual stimuli (i.e., monocular, spatial gratings, focal visual field) using, for example, a larger display.

A critical step in the protocol is the positioning of the electro.......

Acknowledgements

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, Cluster of Excellence 2177 "Hearing4all", Project number 390895286).

....

Materials

NameCompanyCatalog NumberComments
Bepanthen 5% DexpantheolBayerOphtamic gel
Cheetah software 5.11NeuralnyxVersion 5.11Recording software for neurophysiologcal signals
Digital Lynx SXNeuralynxDigital Lynx 16SXRecording system
ECG differential amplifierOtoconsultWDA2 V1.0
Electric shaverAesculapGT420
Electrode HolderTSE Systems430005-HE
Examination lightHeineHL 5000Cold light source lamp
Heating Pad + Temperature Control systemCWETC-1000 Mouse
Histoacryl 0.5 mLB.BraunTissue adhesive
Infrared heat lamp SanitasSIL 06
Ketamine 10% WDTKetaminhydrochlorid
LED stroboscope MonarchNova Strobe PBLVisual stimulation
Matlab 2021aThe Mathworks2021aStimulus control and analysis
Moria Vessel ClampFine Science Tools18320-11
Mouse EEG electrode NeuroNexusH32 (Reticular)32-channel EEG electrode. Thickness: 20 μm; length: 8.6 mm; width 6.8 mm. Platinum sites: 500 μm diameter
Mouse Frame custom madeInformation available on request
Multifunction I/O deviceNational InstrumentsPCIe-6353 with BNC 2090AAnalog stimulus generation, output, and trigger
NaCl 0.9%B.BraunIsotonic, sterile, nonpyrogenic
Neuralynx HS36 NeuralynxHS-36Headstage
Neuronexus probe connectorNeuralynxADPT-HS36-N2T-32AElectrode connector
OscilloscopeTektronixTDS 2014B
Progent Intensive CleanerMeniconProtein remover and disinfecting solution for rigid gas permeable lenses
Recording PC HPHP Z800Recording PC
Rimadyl (Carprofen)ZoetisCarprofen
Silicon Oil M 1000Carl Roth4045.1
Silver wire Science ProductsAG-8WDiameter 203 µm; ECG and reference electrode
Sound proof chamberIAC acoustics
Stereotactic MicromanipulatorTSE Systems430005-M/PFor EEG electrode placement
Stimulation PCDellDell Precision T5810Stimulation PC
Surgical microscopeZeissOp-Mi Focus
Surgical tape3M1527-01.25 cm x 9.1 m
Thilo-Tears 3 mg/gAlcon Pharma GmbHOphtamic gel
Vaselin LichtensteinWinthropWhite vaselin ointment
Xylazin 2%  BernburgXylazinehydrochlorid
Xylocaine Spray (10 mg/puff)AspenLidocaine

References

  1. Haider, N. B., Ikeda, A., Naggert, J. K., Nishina, P. M. Genetic modifiers of vision and hearing. Human Molecular Genetics. 11 (10), 1195-1206 (2002).
  2. Joiner, M. A., Lee, A. Voltage-gated Cav1 channels in disorders of vision and hearing.

Explore More Articles

Topographical EEGVisual Evoked Potentials VEPMultichannel Thin film ElectrodesMouse ModelVisual CortexCross modal ChangesCortical Visual FunctionTime frequency Analysis

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved