A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe the surgical technique and decellularization process for composite rat hindlimbs. Decellularization is conducted using low-concentration sodium dodecyl sulfate through an ex vivo machine perfusion system.
Patients with severe traumatic injuries and tissue loss require complex surgical reconstruction. Vascularized composite allotransplantation (VCA) is an evolving reconstructive avenue for transferring multiple tissues as a composite subunit. Despite the promising nature of VCA, the long-term immunosuppressive requirements are a significant limitation due to the increased risk of malignancies, end-organ toxicity, and opportunistic infections. Tissue engineering of acellular composite scaffolds is a potential alternative in reducing the need for immunosuppression. Herein, the procurement of a rat hindlimb and its subsequent decellularization using sodium dodecyl sulfate (SDS) is described. The procurement strategy presented is based upon the common femoral artery. A machine perfusion-based bioreactor system was constructed and used for ex vivo decellularization of the hindlimb. Successful perfusion decellularization was performed, resulting in a white translucent-like appearance of the hindlimb. An intact, perfusable, vascular network throughout the hindlimb was observed. Histological analyses showed the removal of nuclear contents and the preservation of tissue architecture across all tissue compartments.
VCA is an emerging option for patients requiring complex surgical reconstruction. Traumatic injuries or tumor resections result in volumetric tissue loss that can be difficult to reconstruct. VCA offers the transplantation of multiple tissues such as the skin, bone, muscle, nerves, and vessels as a composite graft from a donor to a recipient1. Despite its promising nature, VCA is limited due to long-term immunosuppressive regimens. Lifelong use of such drugs results in increased risk for opportunistic infections, malignancies, and end-organ toxicity1,2,3. To help reduce and/or eliminate the need for immunosuppression, tissue-engineered scaffolds using decellularization approaches for VCA show great promise.
Tissue decellularization entails retaining the extracellular matrix structure while removing the cellular and nuclear contents. This decellularized scaffold can be repopulated with patient-specific cells4. However, preserving the ECM network of composite tissues is an added challenge. This is due to the presence of multiple tissue types with varying tissue densities, architectures, and anatomic locations within a scaffold. The present protocol offers a surgical technique and a decellularization method for a rat hindlimb. This is a proof-of-concept model for applying this tissue engineering technique to composite tissues. This can also prompt subsequent efforts to regenerate composite tissues through recellularization.
Cadaveric male Lewis rats (300-430 g) obtained from the Toronto General Hospital Research Institute were used for all experiments. For all surgical procedures, sterile instruments and supplies were used to maintain aseptic technique (see the Table of Materials). All procedures were performed in compliance with guidelines from the Animal Care Committee at Toronto General Hospital Research Institute, University Health Network (Toronto, ON, Canada). A total of four hindlimbs were decellularized.
1. Presurgical preparation
2. Procurement of rat hindlimb
Figure 1: Procurement of rat hindlimb. (A) Marking of skin incision at the inguinal ligament level from lateral to medial. (B) View of the femoral vein and the femoral artery, which have been dissected proximally toward the inguinal ligament, indicated by the dotted line. Abbreviations: L = lateral; M = medial; FV = femoral vein; FA = femoral artery. Please click here to view a larger version of this figure.
3. Preparation of solutions
4. Bioreactor and perfusion circuit construction
NOTE: Refer to Figure 2 for the configuration of the bioreactor and perfusion circuit throughout the listed steps.
Figure 2: Preparation of bioreactor and perfusion circuit construction. Apparatus shown of the perfusion circuit including (A) peristaltic pump and (B) corresponding cassettes for both inlet and outlet lines. (C, D) Silicone tubings of 12 cm and 30 cm are also shown with respective connectors. (E) Tubing for peristaltic pump (1.85 mm). Bioreactor chamber with labeled ports for (F) inflow, (G) replenishing port, and (H) outflow. (I) Bioreactor lid shown with ventilation port. Please click here to view a larger version of this figure.
5. Decellularization of rat hindlimbs
Figure 3: Overview of perfusion decellularization bioreactor circuit of rat hindlimb. (A) Schematic representation of bioreactor perfusion circuit. Blue arrows indicate the direction of detergent and waste flow. (B) Overview of the decellularization circuit with bioreactor containing rat hindlimb. The SDS reservoir (left flask) leads into the peristaltic pump and into the inlet tubing of the bioreactor. The outflow is connected to the waste reservoir (right flask) through the peristaltic pump. (C) (I) Bioreactor containing rat hindlimb with inlet tubing connected to the cannulated femoral artery. (II) Replenishing port located in the corner for perfusing detergent. (III) Outflow tubing suspended in suspension reservoir. Abbreviation: SDS = sodium dodecyl sulfate. Please click here to view a larger version of this figure.
6. Post-decellularization washing and sterilization
The procurement protocol was successful in isolating and cannulating the common femoral arteries for subsequent perfusion steps. The representative dissection images in Figure 1A,B show the incision location and exposure of the femoral vessels with sufficient distance from the bifurcation points. Figure 2 shows the apparatus required for preparing the bioreactor and perfusion circuit. The endpoint of decellularization was determined by obse...
Rat hindlimbs are useful as experimental models in VCA5. Tissue engineering of acellular scaffolds represents the first step in addressing the shortcomings of long-term immunosuppression regimens associated with VCA. The use of composite grafts poses an added challenge given the presence of multiple tissues, each having unique functional, immunogenic, and structural properties. The present protocol shows a successful method for obtaining acellular composite rat hindlimbs. These scaffolds can be fu...
The authors have no conflicts of interest to declare.
Figure 3A was created in BioRender.com.
Name | Company | Catalog Number | Comments |
0.9% Sodium Chloride Injection USP 50 mL | Baxter Corporation | JB1308M | |
1 mL Disposable Serological Pipets | VWR | 75816-102 | |
10 cc Disposable Syringes | Obtained from Research Institution | ||
3-way Stopcock | Obtained from Research Institution | ||
5cc Disposable Syringes | Obtained from Research Institution | ||
70% Isopropyl Alcohol | Obtained from Research Institution | ||
Acrodisc Syringe Filter 0.2 µm | VWR | CA28143-310 | |
Adson Forceps, Straight | Fine Science Tools | 11006-12 | |
Angiocatheter 24 G 19 mm (¾”) | VWR | 38112 | |
Antibiotic-Antimycotic Solution (100x) 100 mL | Multicell | 450-115-EL | |
Bone Cutter | Fine Science Tools | 12029-12 | |
Connectors for 1/16" to 1/8" Tubes | McMasterCarr | 5117K52 | |
Female Luer to barbed adapter (PVDF) - 1/8" ID | McMasterCarr | 51525K328 | |
Fine Forceps | Fine Science Tools | 11254-20 | |
Fine Forceps with Micro-Blunted Tips | Fine Science Tools | 11253-20 | |
Heparin Sodium Injection 10,000 IU/10 mL | LEO Pharma Inc. | 006174-09 | |
Male Luer to barbed adapter (PVDF) - 1/8" ID | McMasterCarr | 51525K322 | |
Micro Needle Holder | WLorenz | 04-4125 | |
Microscissors | WLorenz | SP-4506 | |
Peracetic Acid | Sigma Aldrich | 269336-100ML | |
Peristaltic Pump, 3-Channel | Cole Parmer | RK-78001-68 | |
Phosphate Buffered Saline 1x 500 mL | Wisent | 311-425-CL | |
Povidone Surgical Scrub Solution | Obtained from Research Institution | ||
Pump Tubing, 3-Stop, Tygon E-LFL | Cole Parmer | RK-96450-40 | |
Pump Tubing, Platinum-Cured Silicone | Cole Parmer | RK-96410-16 | |
Scalpel Blade - #10 | Fine Science Tools | 10010-00 | |
Scalpel Handle - #3 | Fine Science Tools | 10003-12 | |
Sodium Dodecyl Sulfate Reagent Grade: Purity: >99%, 1 kg | Bioshop | SDS003.1 | |
Surgical Suture #6-0 | Covidien | VS889 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved