Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We present a step-by-step procedure for electrochemical exfoliation of black phosphorus (BP), one of the most promising emerging 2D materials with applications in (opto)electronics, from its bulk crystals, as well as the morphological characterization by scanning electron microscopy, atomic force microscopy, and transmission electron microscopy.

Abstract

To obtain high-quality two-dimensional (2D) materials from the bulky crystals, delamination under an externally controlled stimulus is crucial. Electrochemical exfoliation of layered materials requires simple instrumentation yet offers high-quality exfoliated 2D materials with high yields and features straightforward upscalability; therefore, it represents a key technology for advancing fundamental studies and industrial applications. Moreover, the solution processability of functionalized 2D materials enables the fabrication of (opto)electronic and energy devices via different printing technologies such as inkjet printing and 3D printing. This paper presents the electrochemical exfoliation protocol for the synthesis of black phosphorus (BP), one of the most promising emerging 2D materials, from its bulk crystals in a step-by-step manner, namely, cathodic electrochemical exfoliation of BP in the presence of N(C4H9)4∙HSO4 in propylene carbonate, dispersion preparation by sonication and subsequent centrifugation for the separation of flakes, and morphological characterization by scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM).

Introduction

Due to their superior mechanical, electrical, and optical properties in comparison to their layered bulk analogs, 2D materials have attracted considerable attention among the scientific community. Being the predecessor and the most studied of all 2D materials for several decades, graphene is still in the spotlight of cutting-edge discoveries such as membranes1, sensors2, catalysts3, energy technologies4, topological spintronic devices5, and condensed matter physics6. Inspired by that, numerous other 2D materials have been synt....

Protocol

NOTE: See the Table of Materials for details related to the materials and equipment used in this protocol.

1. Synthesis of black phosphorus (BP) by electrochemical exfoliation

  1. Chop the large pieces of BP crystal into small pieces of ~1-2 mm (≤5 mg) and confine them inside a platinum gauze to serve as the cathode.
  2. Cut a piece of platinum foil with dimensions ~2 cm2 to serve as the anode and fix it in a way that it faces th.......

Representative Results

Figure 1 demonstrates the electrochemical exfoliation of BP crystals, the mechanism of intercalation of TBA·HSO4 and subsequent delamination, and the reaction cell setup.

figure-representative results-313
Figure 1: Schematic demonstration of the mechanism of electrochemical exfoliation of black phosphorus crystals.......

Discussion

BP has a valence shell configuration of 3s2 3p3, and each phosphorus atom possesses a lone electron pair, which makes the phosphorus atoms vulnerable to fast oxidative degradation in the presence of oxygen, water, and light41. To prevent degradation, it is recommended to use degassed and anhydrous solvents and reagents and carry out the production process under an inert atmosphere.

During the exfoliation of BP crystals, part of the produced H+.......

Acknowledgements

The authors acknowledge ERC Consolidator Grant on T2DCP, M-ERA-NET project HYSUCAP, SPES3 project funded by the German Ministry for Education and Research (BMBF) under Forschung für neue Mikroelektronik (ForMikro) program, Graphene Flagship Core 3 881603, and Emerging Printed Electronics Research Infrastructure (EMERGE). The EMERGE project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 101008701. The authors thank Dr. Markus Löffler for helpful discussions and characterization and also acknowledge the Center for Advancing Electronics Dresden (cfaed) and the Dresden Center for Nanoan....

Materials

NameCompanyCatalog NumberComments
2-PropanolSigma Aldrich278475anhydrous, 99.5%
Atomic force microscopy (AFM)Bruker Multimode 8 system
Black phosphorusSmart Elements4504Black Phosphorus 5.0 g sealed under Argon in ampoule
CentrifugeSigma 4-16KS
Propylene carbonateSigma Aldrich310328anhydrous, 99.7%
Scanning electron microscope (SEM)Zeiss Gemini 500
Tetra-n-butylammonium hydrogen sulfateSigma Aldrich791784anhydrous, free-flowing, Redi-Dri, 97%
Transmission electron microscopy (TEM)Zeiss Libra 120 kV

References

  1. Yang, Q., et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nature Materials. 16 (12), 1198-1202 (2017).
  2. Goossens, S., et al. Broadband....

Explore More Articles

Electrochemical ExfoliationBlack Phosphorus2D MaterialsLayered MaterialsSolution Processabilityopto electronic DevicesEnergy DevicesInkjet Printing3D PrintingCathodic ExfoliationN C4H9 4 HSO4Propylene CarbonateSEMAFMTEM

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved