Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

A pendant drop surface film balance implemented with a multi-subphase exchange, nicknamed the OCTOPUS, allows for mimicking digestive conditions by the sequential subphase exchange of the original bulk solution with simulated gastrointestinal fluids. The simulated in vitro digestion is monitored by recording in situ the interfacial tension of the digested interfacial layer.

Abstract

Emulsions are currently being used to encapsulate and deliver nutrients and drugs to tackle different gastrointestinal conditions such as obesity, nutrient fortification, food allergies, and digestive diseases. The ability of an emulsion to provide the desired functionality, namely, reaching a specific site within the gastrointestinal tract, inhibiting/retarding lipolysis, or facilitating digestibility, ultimately depends on its susceptibility to enzymatic degradation in the gastrointestinal tract. In oil-in-water emulsions, lipid droplets are surrounded by interfacial layers, where the emulsifiers stabilize the emulsion and protect the encapsulated compound. Achieving a tailored digestibility of emulsions depends on their initial composition but also requires monitoring the evolution of those interfacial layers as they are subjected to different phases of gastrointestinal digestion. A pendant drop surface film balance implemented with a multi-subphase exchange allows for simulating the in vitro digestion of emulsions in a single aqueous droplet immersed in oil by applying a customized static digestion model. The transit through the gastrointestinal tract is mimicked by the subphase exchange of the original droplet bulk solution with artificial media, mimicking the physiological conditions of each compartment/step of the gastrointestinal tract. The dynamic evolution of the interfacial tension is recorded in situ throughout the whole simulated gastrointestinal digestion. The mechanical properties of digested interfaces, such as interfacial dilatational elasticity and viscosity, are measured after each digestion phase (oral, gastric, small intestine). The composition of each digestive media can be tuned to account for the particularities of the digestive conditions, including gastrointestinal pathologies and infant digestive media. The specific interfacial mechanisms affecting proteolysis and lipolysis are identified, providing tools to modulate digestion by the interfacial engineering of emulsions. The obtained results can be manipulated for designing novel food matrices with tailored functionalities such as low allergenicity, controlled energy intake, and decreased digestibility.

Introduction

Understanding how fat is digested, which involves emulsion digestion, is important to rationally design products with tailored functionality1. The substrate for fat digestion is an emulsion since fat is emulsified upon consumption by mechanical action and mixing with biosurfactants in the mouth and stomach. Also, most of the fat consumed by humans is already emulsified (such as milk products), and in the case of infants or some elderly people, this is the only form of consumption. Hence, the design of emulsion-based products with specific digestion profiles is very important in nutrition1. Moreover, emulsions can encapsu....

Protocol

1. Cleaning sequence for all glassware used in surface science experimentation

  1. Scrub the glassware with a concentrated cleaning solution (see Table of Materials) diluted in water (10%).
  2. Rinse thoroughly with a sequence of tap water, propanol, distilled water, and ultrapure water. Dry in a cabin and store in a closed cabinet until use.

2. Sample preparation

  1. Prepare artificial digestive media according to.......

Representative Results

This section shows different examples of digestion profiles measured with the OCTOPUS. The general appearance of the simulated digestion profile matches is shown in Figure 4B. The interfacial tension is usually represented against time in the digestion profile. The different phases/digestion steps considered are represented in different colors. The first phase forms the initial layer and corresponds to the adsorption phase of the emulsifier or protein/surfactant/polymer, depending on each ca.......

Discussion

This article describes a generalized protocol to measure in vitro digestion of interfacial layers by using pendant drop equipment. The protocol can be adjusted to the specific requirements of the experiment by tuning the composition of the digestive buffers, which are based on the INFOGEST11,20 harmonized protocol to facilitate comparison with literature. The digestive enzymes and biosurfactants can be added individually, sequentially, or together. This .......

Acknowledgements

This research was funded by projects RTI2018-101309-B-C21 and PID2020-631-116615RAI00, funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe". This work was (partially) supported by the Biocolloid and Fluid Physics Group (ref. PAI-FQM115) of the University of Granada (Spain).

....

Materials

NameCompanyCatalog NumberComments
Alpha-chymotrypsin from bovine pancreasSigma-AldrichC4129Enzyme
Beta-lactoglobulinSigma-AldrichL0130Emulsfier
Bovine Serum AlbuminSigma-Aldrich9048-46-8Emulsfier
CaCl2Sigma-Aldrich10043-52-4Electrolyte
CentrifugeKronton instrumentsCentrikon T-124For separating oil and resins
Citrus pectinSigma-AldrichP9135Emulsfier
co-lipase FROM PORCINE PANCREASSigmaC3028Enzyme
CONTACTOUniversity of Granada (UGR)https://core.ugr.es/dinaten/, last access: 07/18/2022
DINATENUniversity of Granada (UGR)https://core.ugr.es/dinaten/, last access: 07/18/2022
Gastric lipaseLipolytechRGE15-1GEnzyme
Human Serum AlbuminSigma-Aldrich70024-90-7Emulsifier
INFOGESThttp://www.proteomics.ch/IVD/
Lipase from porcine pancreas, type IISigma-AldrichL33126Enzyme
Magnesium metasilicate resinsFluka1343-88-0Resins to purify oil
Micro 90International productsM-9051-04Cleaner
NaClSigma7647-14-5Electrolyte
NaH2PO4Scharlau10049-21-5To prepare buffer
OCTOPUSProducciones Científicas y Técnicas S.L. (Gójar, Spain)Pendandt Drop Equipment implemented with multi subphase exchange
Olive oilSigma-Aldrich1514oil
Pancreatic from porcine pancreasSigmaP7545-25 gEnzyme
PepsinSigma-AldrichP6887Enzyme
Pluronic F127SigmaP2443Emulsifier
Pluronic F68SigmaP1300Emulsfier
Sodium deoxycholateSigmaBile salts
Sodium glycodeoxycholateSigmaC9910Bile salts
Sodium taurocholateSigma86339Bile salts
Syringe FilterMillex-DPSLGP033R Syringe Filter 0.22 µm pore size polyethersulfone
TrypsinSigma-AldrichT1426Enzyme

References

  1. McClements, D. J. The biophysics of digestion: Lipids. Current Opinion in Food Science. 21, 1-6 (2018).
  2. McClements, D. J., Li, Y. Structured emulsion-based delivery systems: Controlling the digestion and r....

Explore More Articles

In Vitro DigestionEmulsion DigestionSingle Droplet DigestionSimulated Gastrointestinal FluidsEmulsifierInterfacial TensionInterfacial ViscosityInterfacial ElasticityLipaseLipolysisLipid InteractionMicro ConcentrationExperimental Technique

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved