A subscription to JoVE is required to view this content. Sign in or start your free trial.
ATAC-seq is a DNA sequencing method that uses the hyperactive mutant transposase, Tn5, to map changes in chromatin accessibility mediated by transcription factors. ATAC-seq enables the discovery of the molecular mechanisms underlying phenotypic alterations in cancer cells. This protocol outlines optimization procedures for ATAC-seq in epithelial cell types, including cancer cells.
The assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) probes deoxyribonucleic acid (DNA) accessibility using the hyperactive Tn5 transposase. Tn5 cuts and ligates adapters for high-throughput sequencing within accessible chromatin regions. In eukaryotic cells, genomic DNA is packaged into chromatin, a complex of DNA, histones, and other proteins, which acts as a physical barrier to the transcriptional machinery. In response to extrinsic signals, transcription factors recruit chromatin remodeling complexes to enable access to the transcriptional machinery for gene activation. Therefore, identifying open chromatin regions is useful when monitoring enhancer and gene promoter activities during biological events such as cancer progression. Since this protocol is easy to use and has a low cell input requirement, ATAC-seq has been widely adopted to define open chromatin regions in various cell types, including cancer cells. For successful data acquisition, several parameters need to be considered when preparing ATAC-seq libraries. Among them, the choice of cell lysis buffer, the titration of the Tn5 enzyme, and the starting volume of cells are crucial for ATAC-seq library preparation in cancer cells. Optimization is essential for generating high-quality data. Here, we provide a detailed description of the ATAC-seq optimization methods for epithelial cell types.
Chromatin accessibility is a key requirement for the regulation of gene expression on a genome-wide scale1. Changes in chromatin accessibility are frequently associated with several disease states, including cancer2,3,4. Over the years, numerous techniques have been developed to enable researchers to probe the chromatin landscape by mapping regions of chromatin accessibility. Some of them include DNase-seq (DNase I hypersensitive sites sequencing)5, FAIRE-seq (formaldehyde-assisted isolation of regulatory elements)
1. Preparations before beginning the experiment
To obtain successful and high-quality ATAC-seq data, it is important to optimize the experimental conditions. ATAC-seq library preparation can be separated into the five major steps (Figure 1), namely cell lysis, tagmentation (fragmentation and adapter insertion by Tn5), genomic DNA purification, PCR amplification, and data analysis. As an initial process, the cell lysis (nuclear isolation) buffer must be first optimized for each cell type. Either the hypotonic buffer described in the origin.......
ATAC-seq has been widely used for mapping open and active chromatin regions. Cancer cell progression is frequently driven by genetic alterations and epigenetic reprogramming, resulting in altered chromatin accessibility and gene expression. An example of this reprogramming is seen during the epithelial-to-mesenchymal transition (EMT) and its reverse process, mesenchymal-to-epithelial transition (MET), which are known to be key cellular reprogramming processes during tumor metastasis30. Another exa.......
The authors declare that there are no relevant or material financial interests that relate to the research described in this paper.
We gratefully acknowledge the UND Genomics Core facility for outstanding technical assistance.
This work was funded by the National Institutes of Health [P20GM104360 to M.T., P20 GM104360 to A.D.] and start-up funds provided by the University of North Dakota School of Medicine and Health Sciences, Department of Biomedical Sciences [to M.T.].
....Name | Company | Catalog Number | Comments |
1.5 mL microcentrifuge tubes | USA Scientific | 1615-5500 | Natural |
10 µL XL TipOne tips | USA Scientific | 1120-3810 | Filtered and low-retention |
100 µL XL TipOne RPT tips | USA Scientific | 1182-1830 | Filtered and low-retention |
100 µL XL TipOne tips | USA Scientific | 1120-1840 | Filtered and low-retention. Beveled Grade |
15 mL Conical Centrifuge Tubes | Corning | 352096 | |
20 µL TipOne RPT tips | USA Scientific | 1183-1810 | Filtered and low-retention |
200 µL TipOne RPT tips | USA Scientific | 1180-8810 | Filtered and low-retention |
50 mL Centrifuge Tubes | Fisherbrand | 06-443-19 | |
Agarose | ThermoFisher Scientific | YBP136010 | Genetic Analysis Grade |
All the cell lines used in this study are obtained from ATCC | ATCC | ||
Allegra X-30R Centrifuge | Beckman Coulter | 364658 | SX2415 |
AMPure XP beads | Beckman Coulter | A63881 | Bead purification kit |
CellDrop Cell Counter | DeNovix | CellDrop FL | Cell counter |
EDTA | MilliporeSigma | EDS | BioUltra, anhydrous, ≥99% (titration) |
EGTA | MilliporeSigma | E3889 | |
Ethanol 100% | ThermoFisher Scientific | AC615100020 | Anhydrous; Fisher Scientific - Decon Labs Sterilization Products |
Fetal Bovine Serum - TET Tested | R&D Systems | S10350 | Triple 0.1 µm filtered |
Gibco DMEM 1x | ThermoFisher Scientific | 11965092 | [+] 4.5 g/L D-glucose; [+] L-Glutamine; [-] Sodium pyruvate |
Gibco PBS 1x | ThermoFisher Scientific | 10010023 | pH 7.4 |
Gibco Trypsin-EDTA 1x | ThermoFisher Scientific | 25200056 | (0.25%), phenol red |
Glycerol | IBI Scientific | 56-81-5 | |
Glycine | MilliporeSigma | G8898 | |
HCl | MilliporeSigma | H1758 | |
HEPES | MilliporeSigma | H3375 | |
Invitrogen Qubit Fluorometer | ThermoFisher Scientific | Q32857 | |
MgCl2 | MilliporeSigma | M3634 | |
MinElute PCR Purification kit | Qiagen | 28004 | DNA purification kit |
NaCl | IBI Scientific | 7647-14-5 | |
NaOH | MilliporeSigma | S8045 | BioXtra, ≥98% (acidimetric), pellets (anhydrous) |
NEBNext High-Fidelity 2x PCR Master Mix | New England Biolabs | M0541 | |
Nextera DNA Sample Preparation Kit | Illumina | FC-121-1030 | 2x TD and Tn5 Transposase |
NP - 40 (IGEPAL CA-630) | MilliporeSigma | I8896 | for molecular biology |
PCR Detection System | BioRad | 1855484 | CFX384 Real-Time System. C1000 Touch Thermal Cycler |
PIPES | MilliporeSigma | P1851 | BioPerformance Certified, suitable for cell culture |
Qubit dsDNA HS Assay kit | ThermoFisher Scientific | Q32854 | Invitrogen; Nucleic acid quantitation kit |
Quibit Assay Tubes | ThermoFisher Scientific | Q32856 | Invitrogen |
SDS | MilliporeSigma | L3771 | |
Sodium Acetate | Homemade | - | pH 5.2 |
Sucrose | IBI Scientific | 57-50-1 | |
SYBR Gold | ThermoFisher Scientific | S11494 | |
SYBR Green Supermix, 1.25 mL | BioRad | 1708882 | |
T100 Thermal Cycler | BioRad | 1861096 | |
TempAssure 0.2 mL PCR 8-Tube Strips | USA Scientific | 1402-4700 | Flex-free, natural, polypropylene |
TempPlate 384-WELL PCR PLATE | USA Scientific | 1438-4700 | Single notch. Natural polypropylene |
Tris Base | MilliporeSigma | 648311 | ULTROL Grade |
Triton x-100 | IBI Scientific | 9002-93-1 | |
TrueSeq Dual Index Sequencing Primer Kit | Illumina | PE-121-1003 | paired-end |
Trypan Blue Stain | ThermoFisher Scientific | Q32851 | |
Tween-20 | MilliporeSigma | P7949 | BioXtra, viscous liquid |
Water | MilliporeSigma | W3500 | sterile-filtered, BioReagent, suitable for cell culture |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved